Documentation Verification Report

HalfPlane

📁 Source: Mathlib/Analysis/Complex/HalfPlane.lean

Statistics

MetricCount
Definitions0
TheoremsisOpen_im_gt_EReal, isOpen_im_lt_EReal, isOpen_re_gt_EReal, isOpen_re_lt_EReal
4
Total4

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_im_gt_EReal 📖mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
im
isOpen_lt
OrderTopology.to_orderClosedTopology
EReal.instOrderTopology
continuous_const
EReal.continuous_coe_iff
continuous_im
isOpen_im_lt_EReal 📖mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
im
isOpen_lt
OrderTopology.to_orderClosedTopology
EReal.instOrderTopology
EReal.continuous_coe_iff
continuous_im
continuous_const
isOpen_re_gt_EReal 📖mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
re
isOpen_lt
OrderTopology.to_orderClosedTopology
EReal.instOrderTopology
continuous_const
EReal.continuous_coe_iff
continuous_re
isOpen_re_lt_EReal 📖mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
setOf
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
Real.toEReal
re
isOpen_lt
OrderTopology.to_orderClosedTopology
EReal.instOrderTopology
EReal.continuous_coe_iff
continuous_re
continuous_const

---

← Back to Index