Documentation Verification Report

Analytic

📁 Source: Mathlib/Analysis/Complex/Harmonic/Analytic.lean

Statistics

MetricCount
Definitions0
TheoremsanalyticAt, analyticAt_complex_partial, differentiableAt_complex_partial, harmonic_is_realOfHolomorphic
4
Total4

HarmonicAt

Theorems

NameKindAssumesProvesValidatesDepends On
analyticAt 📖mathematicalInnerProductSpace.HarmonicAt
Complex
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
AnalyticAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Complex.instFiniteDimensionalReal
Metric.isOpen_iff
InnerProductSpace.isOpen_setOf_harmonicAt
harmonic_is_realOfHolomorphic
analyticAt_congr
Filter.eventually_of_mem
Metric.ball_mem_nhds
Set.EqOn.symm
AnalyticAt.comp
ContinuousLinearMap.analyticAt
AnalyticAt.restrictScalars
IsScalarTower.right
Metric.mem_ball_self
analyticAt_complex_partial 📖mathematicalInnerProductSpace.HarmonicAt
Complex
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
AnalyticAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instRCLike
RCLike.innerProductSpace
Complex.instSub
Complex.ofReal
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Real.denselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
AddCommGroup.toAddCommMonoid
Complex.addCommGroup
Real.pseudoMetricSpace
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
Real.normedCommRing
ContinuousLinearMap.funLike
fderiv
Complex.instOne
Complex.instMul
Complex.I
Complex.instFiniteDimensionalReal
DifferentiableOn.analyticAt
Complex.instCompleteSpace
DifferentiableAt.differentiableWithinAt
differentiableAt_complex_partial
IsOpen.mem_nhds
InnerProductSpace.isOpen_setOf_harmonicAt
differentiableAt_complex_partial 📖mathematicalInnerProductSpace.HarmonicAt
Complex
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instSub
Complex.ofReal
DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Real.denselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
Real.pseudoMetricSpace
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
Real.normedCommRing
ContinuousLinearMap.funLike
fderiv
Complex.instOne
Complex.instMul
Complex.I
Complex.instFiniteDimensionalReal
differentiableAt_complex_iff_differentiableAt_real
DifferentiableAt.sub
DifferentiableAt.clm_apply
differentiableAt_const
SeminormedAddCommGroup.toIsTopologicalAddGroup
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContDiffAt.differentiableAt_one
RingHomIsometric.ids
Algebra.to_smulCommClass
ContDiffAt.fderiv_succ
ContDiffAt.fun_comp
ContDiffAt.snd
contDiffAt_fun_id
DifferentiableAt.smul
IsScalarTower.right
fderiv_sub
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
fderiv_const_smul
RingHomCompTriple.ids
fderiv_comp
ContinuousLinearMap.differentiableAt
ContinuousLinearMap.comp.congr_simp
ContinuousLinearMap.fderiv
IsTopologicalSemiring.toContinuousAdd
instIsTopologicalRingReal
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsBoundedSMul.continuousSMul
Complex.instT2Space
mul_sub
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
IsTopologicalAddGroup.toContinuousAdd
fderiv_clm_apply
fderiv_fun_const
ContinuousLinearMap.comp_zero
zero_add
Complex.I_sq
neg_mul
one_mul
sub_neg_eq_add
add_comm
sub_eq_add_neg
Nat.cast_one
ContDiffAt.isSymmSndFDerivAt
minSmoothness_of_isRCLikeNormedField
instIsRCLikeNormedField
Filter.EventuallyEq.eq_of_nhds
FiniteDimensional.rclike_to_real
InnerProductSpace.laplacian_eq_iteratedFDeriv_complexPlane
iteratedFDeriv_two_apply
Matrix.cons_val_fin_one
Complex.ofReal_neg
mul_neg

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
harmonic_is_realOfHolomorphic 📖mathematicalInnerProductSpace.HarmonicOnNhd
Complex
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
Complex.instFiniteDimensionalReal
Real
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
AnalyticOnNhd
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instRCLike
RCLike.innerProductSpace
Set.EqOn
Complex.re
Complex.instFiniteDimensionalReal
Metric.ball_eq_empty
DifferentiableAt.differentiableWithinAt
HarmonicAt.differentiableAt_complex_partial
DifferentiableOn.isExactOn_ball
Complex.instCompleteSpace
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasDerivAt.differentiableAt
DifferentiableOn.restrictScalars
IsScalarTower.right
DifferentiableOn.analyticOnNhd
Metric.isOpen_ball
Convex.eqOn_of_fderivWithin_eq
instIsRCLikeNormedField
convex_ball
Differentiable.comp_differentiableOn
ContinuousLinearMap.differentiable
ContDiffAt.differentiableAt
two_ne_zero
CharZero.NeZero.two
WithTop.charZero
IsOpen.uniqueDiffOn
PerfectSpace.not_isolated
instPerfectSpace
IsTopologicalSemiring.toContinuousAdd
DifferentiableAt.restrictScalars
fderivWithin_eq_fderiv
instIsTopologicalRingReal
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IsOpen.uniqueDiffWithinAt
DifferentiableAt.comp
ContinuousLinearMap.differentiableAt
RingHomCompTriple.ids
fderiv_comp
ContinuousLinearMap.fderiv
LinearMap.IsScalarTower.compatibleSMul
DifferentiableAt.fderiv_restrictScalars
ContinuousLinearMap.ext
mul_one
Complex.re_add_im
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
fderiv_eq_smul_deriv
HasDerivAt.deriv
MulZeroClass.zero_mul
MulZeroClass.mul_zero
sub_self
sub_zero
one_mul
zero_add
zero_sub
mul_neg
sub_neg_eq_add
dist_self

---

← Back to Index