Documentation Verification Report

Liouville

πŸ“ Source: Mathlib/Analysis/Complex/Liouville.lean

Statistics

MetricCount
Definitions0
Theoremsliouville_theorem_aux, norm_deriv_le_of_forall_mem_sphere_norm_le, norm_iteratedDeriv_le_of_forall_mem_sphere_norm_le, apply_eq_apply_of_bounded, apply_eq_of_tendsto_cocompact, eq_const_of_tendsto_cocompact, exists_const_forall_eq_of_bounded, exists_eq_const_of_bounded
8
Total8

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
liouville_theorem_aux πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”β€”isBounded_iff_forall_norm_le
lt_max_iff
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
LE.le.trans
Set.mem_range_self
le_max_left
norm_le_zero_iff
le_of_forall_gt_imp_ge_of_dense
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_deriv_le_of_forall_mem_sphere_norm_le
div_pos
Differentiable.diffContOnCl
div_div_cancelβ‚€
LT.lt.ne'
GT.gt.lt
is_const_of_deriv_eq_zero
norm_deriv_le_of_forall_mem_sphere_norm_le πŸ“–mathematicalReal
Real.instLT
Real.instZero
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
deriv
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”SeminormedAddCommGroup.to_isUniformAddGroup
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsBoundedSMul.continuousSMul
UniformSpace.Completion.instIsBoundedSMul
HasFDerivAt.comp_hasDerivAt
ContinuousLinearMap.hasFDerivAt
DifferentiableAt.hasDerivAt
DiffContOnCl.differentiableAt
Metric.isOpen_ball
Metric.mem_ball_self
HasDerivAt.deriv
UniformSpace.Completion.norm_coe
UniformSpace.Completion.completeSpace
Differentiable.comp_diffContOnCl
ContinuousLinearMap.differentiable
Eq.trans_le
norm_iteratedDeriv_le_of_forall_mem_sphere_norm_le πŸ“–mathematicalReal
Real.instLT
Real.instZero
DiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
iteratedDeriv
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Real.instNatCast
Nat.factorial
Monoid.toNatPow
Real.instMonoid
β€”inv_pow
norm_smul
NormedSpace.toNormSMulClass
norm_inv
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
div_le_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
Real.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
NormMulClass.toNoZeroDivisors
instCharZero
inv_smul_smulβ‚€
inv_div
div_eq_inv_mul
mul_comm
nsmul_eq_mul
smul_assoc
AddCommMonoid.nat_isScalarTower
mul_inv_rev
inv_I
neg_mul
DiffContOnCl.circleIntegral_one_div_sub_center_pow_smul
one_div
neg_smul
smul_neg
RCLike.norm_nsmul
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
NeZero.charZero_one
RCLike.charZero_rclike
Nat.factorial_pos
circleIntegral.norm_two_pi_i_inv_smul_integral_le_of_norm_le_const
LT.lt.le

Differentiable

Theorems

NameKindAssumesProvesValidatesDepends On
apply_eq_apply_of_bounded πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”β€”Complex.liouville_theorem_aux
comp
add_const
smul_const
NormedSpace.toIsBoundedSMul
IsScalarTower.left
differentiable_id
Bornology.IsBounded.subset
Set.range_comp_subset_range
zero_smul
zero_add
one_smul
sub_add_cancel
apply_eq_of_tendsto_cocompact πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.Tendsto
Filter.cocompact
nhds
β€”β€”eq_const_of_tendsto_cocompact
eq_const_of_tendsto_cocompact πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.Tendsto
Filter.cocompact
nhds
β€”β€”Metric.exists_isBounded_image_of_tendsto
Filter.mem_cocompact
Bornology.IsBounded.subset
Bornology.IsBounded.union
IsCompact.isBounded
IsCompact.image
continuous
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Set.image_univ
Set.image_union
Set.image_mono
Set.union_compl_self
Set.union_subset_union
subset_refl
Set.instReflSubset
exists_eq_const_of_bounded
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instNeBotCocompactOfNoncompactSpace
RealNormedSpace.noncompactSpace
tendsto_const_nhds
exists_const_forall_eq_of_bounded πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”β€”apply_eq_apply_of_bounded
exists_eq_const_of_bounded πŸ“–β€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”β€”exists_const_forall_eq_of_bounded

---

← Back to Index