Documentation Verification Report

Norm

๐Ÿ“ Source: Mathlib/Analysis/Complex/Norm.lean

Statistics

MetricCount
DefinitionscauSeqConj, cauSeqIm, cauSeqNorm, cauSeqRe, instNorm, instNormedAddCommGroup, limAux
7
Theoremsabs_im_div_norm_le_one, abs_im_eq_norm, abs_im_le_norm, abs_im_lt_norm, abs_re_div_norm_le_one, abs_re_eq_norm, abs_re_le_norm, abs_re_lt_norm, dist_conj_self, dist_eq, dist_eq_re_im, dist_mk, dist_of_im_eq, dist_of_re_eq, dist_self_conj, edist_of_im_eq, edist_of_re_eq, equiv_limAux, im_le_norm, instIsComplete, isAbsoluteValueNorm, isCauSeq_conj, isCauSeq_im, isCauSeq_norm, isCauSeq_re, lim_conj, lim_eq_lim_im_add_lim_re, lim_im, lim_norm, lim_re, ne_zero_of_one_lt_re, ne_zero_of_re_pos, nndist_conj_self, nndist_of_im_eq, nndist_of_re_eq, nndist_self_conj, nnnorm_I, nnnorm_natCast, nnnorm_nnratCast, nnnorm_ofNat, nnnorm_ratCast, nnnorm_real, normSq_eq_norm_sq, normSq_ofReal_add_I_mul_sqrt_one_sub, normSq_ofReal_sub_I_mul_sqrt_one_sub, norm_I, norm_add_mul_I, norm_conj, norm_def, norm_div, norm_eq_sqrt_sq_add_sq, norm_intCast, norm_int_of_nonneg, norm_le_abs_re_add_abs_im, norm_le_sqrt_two_mul_max, norm_mul, norm_mul_self_eq_normSq, norm_natCast, norm_nnratCast, norm_ofNat, norm_of_nonneg, norm_pow, norm_prod, norm_ratCast, norm_real, norm_sub_one_sq_eqOn_sphere, norm_sub_one_sq_eq_of_norm_eq_one, norm_sub_one_sq_eq_of_norm_one, norm_two, norm_zpow, range_norm, range_normSq, re_le_norm, re_neg_ne_zero_of_one_lt_re, re_neg_ne_zero_of_re_pos, sq_norm, sq_norm_sub_sq_im, sq_norm_sub_sq_re
78
Total85

Complex

Definitions

NameCategoryTheorems
cauSeqConj ๐Ÿ“–CompOp
1 mathmath: lim_conj
cauSeqIm ๐Ÿ“–CompOp
2 mathmath: lim_im, lim_eq_lim_im_add_lim_re
cauSeqNorm ๐Ÿ“–CompOp
1 mathmath: lim_norm
cauSeqRe ๐Ÿ“–CompOp
2 mathmath: lim_re, lim_eq_lim_im_add_lim_re
instNorm ๐Ÿ“–CompOp
340 mathmath: norm_conj, HadamardThreeLines.norm_le_interpStrip_of_mem_verticalClosedStrip_eps, CuspFormClass.qExpansion_isBigO, Polynomial.mahlerMeasure_const, Polynomial.mahlerMeasure_def_of_ne_zero, tendsto_log_nhdsWithin_im_neg_of_re_neg_of_im_zero, norm_circleTransformBoundingFunction_le, log_re, EisensteinSeries.linear_inv_isBigO_left, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, lim_conj, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I, Int.cast_complex_isTheta_cast_real, norm_polarCoord_symm, norm_sub_eq, instIsComplete, summable_riemannZetaSummand, Polynomial.norm_leadingCoeff_eq_one_of_mahlerMeasure_eq_one, norm_le_abs_re_add_abs_im, norm_jacobiThetaโ‚‚_term_le, isTheta_cpow_rpow, Polynomial.mahlerMeasure_eq_leadingCoeff_mul_prod_roots, isLittleO_exp_neg_mul_sq_cocompact, norm_jacobiThetaโ‚‚_term_fderiv_ge, norm_mul_self_eq_normSq, NumberField.InfinitePlace.le_iff_le, NumberField.norm_norm_le_norm_mul_house_pow, countingFunction_finsum_eq_finsum_add, OnePoint.isBoundedAt_iff_exists_SL2Z, Polynomial.logMahlerMeasure_C_mul, EisensteinSeries.summand_bound_of_mem_verticalStrip, Function.Periodic.norm_qParam_le_of_one_half_le_im, arg_of_re_nonneg, Polynomial.one_le_prod_max_one_norm_roots, norm_eq_one_iff', norm_cexp_neg_mul_sq, Real.norm_exp_I_mul_ofReal_sub_one_le, circleAverage_log_norm_sub_const_of_mem_closedBall, norm_cos_add_sin_mul_I, Function.Periodic.norm_qParam_lt_iff, norm_pow, DirichletCharacter.norm_LSeries_product_ge_one, isCauSeq_conj, integrableOn_Ioi_norm_cpow_of_lt, OnePoint.isBoundedAt_iff_forall_SL2Z, integral_rpow_mul_exp_neg_rpow, exp_def, volume_sum_rpow_le, NumberField.mixedEmbedding.convexBodySumFun_apply', Polynomial.logMahlerMeasure_of_degree_eq_one, circleAverage_log_norm_sub_const_eq_log_radius_add_posLog, LindemannWeierstrass.exp_polynomial_approx, mul_conj', arg_of_re_neg_of_im_nonneg, NumberField.exists_conjugate_one_le_norm, NumberField.InfinitePlace.norm_embedding_eq, deriv_norm_ofReal_cpow, norm_circleMap_zero, arg_of_im_pos, integrableOn_Ioi_norm_cpow_iff, norm_natCast, norm_exp_I_mul_ofReal_sub_one, CuspFormClass.petersson_bounded_left, sq_norm_sub_sq_re, abs_re_eq_norm, norm_add_eq, norm_cpow_of_ne_zero, im_le_norm, norm_ofReal_cpow_eventually_eq_atTop, integral_exp_neg_rpow, norm_mul_cos_arg, sq_norm, exists_norm_eq_mul_self, Polynomial.logMahlerMeasure_X_sub_C, EisensteinSeries.summable_norm_eisSummand, norm_cpow_of_imp, norm_eq_one_iff, UpperHalfPlane.norm_ฯƒ, IsExpCmpFilter.isLittleO_exp_cpow, norm_jacobiThetaโ‚‚_term, polarCoord_apply, ValueDistribution.characteristic_sub_characteristic_inv_of_ne_zero, abs_im_le_norm, cpow_ofReal_re, norm_nnratCast, norm_add_eq_iff, Polynomial.logMahlerMeasure_X_add_C, equivRealProd_apply_le', sq_norm_sub_sq_im, LSeriesSummable.le_const_mul_rpow, normSq_eq_norm_sq, ValueDistribution.characteristic_sub_characteristic_inv_at_zero, abs_im_eq_norm, norm_cpow_real, UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_left, isTheta_ofReal, isBigO_re_sub_re, norm_exp_mul_sq_le, isBigO_cpow_rpow, norm_exp_sub_sum_le_norm_mul_exp, Polynomial.intervalIntegrable_mahlerMeasure, HadamardThreeLines.norm_invInterpStrip, continuousOn_norm_circleTransformBoundingFunction, Function.Periodic.im_invQParam, UpperHalfPlane.norm_exp_two_pi_I_lt_one, arg_of_re_neg_of_im_neg, circleIntegrable_log_norm_factorizedRational, isCauSeq_norm_exp, Polynomial.mahlerMeasure_C_mul_X_add_C, tendsto_norm_tan_atTop, SlashInvariantForm.exists_one_half_le_im_and_norm_le, norm_jacobiTheta_sub_one_le, HadamardThreeLines.norm_le_interpStrip_of_mem_verticalClosedStrip, isBigO_riemannZeta_sub_one_div, OnePoint.isBoundedAt_iff, UnitDisc.instCanLiftCoeLtRealNormOfNat, ModularFormClass.exp_decay_sub_atImInfty, ModularFormClass.exists_petersson_le, IsExpCmpFilter.tendsto_norm, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty, log_sub_self_isBigO, ValueDistribution.characteristic_sub_characteristic_inv_le, arg_eq_nhds_of_im_neg, AnalyticOnNhd.circleAverage_log_norm_of_ne_zero, Polynomial.logMahlerMeasure_eq_log_leadingCoeff_add_sum_log_roots, arg_of_im_nonneg_of_ne_zero, isBigO_at_im_infty_jacobiTheta_sub_one, Polynomial.mahlerMeasure_X_add_C, eq_coe_norm_of_nonneg, OnePoint.isBoundedAt_infty_iff, norm_real, CuspFormClass.petersson_bounded_right, ModularFormClass.bdd_at_infty, UpperHalfPlane.norm_qParam_lt_one, conj_mul', hasSum_sq_fourierCoeffOn, LSeries.norm_term_eq, ProbabilityTheory.norm_complexMGF_le_mgf, ModularFormClass.exists_bound, EisensteinSeries.auxbound1, Polynomial.logMahlerMeasure_def, integral_exp_neg_mul_rpow, EisensteinSeries.norm_le_tsum_norm, norm_ratCast, norm_of_nonneg, abs_im_lt_norm, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, summable_dirichletSummand, norm_mul_cos_add_sin_mul_I, norm_zpow, volume_sum_rpow_lt, Polynomial.quadratic_dvd_of_aeval_eq_zero_im_ne_zero, ValueDistribution.characteristic_sub_characteristic_inv, EisensteinSeries.linear_inv_isBigO_right_add, UpperHalfPlane.petersson_norm_symm, MeasureTheory.norm_charFun_le_one, norm_mul_exp_arg_mul_I, dist_eq, cpow_inv_two_im_eq_sqrt, cpow_inv_two_re, Circle.norm_coe, arg_eq_arg_iff, EisensteinSeries.isBigO_linear_add_const_vec, norm_natCast_cpow_of_pos, EisensteinSeries.auxbound2, norm_div, HadamardThreeLines.norm_le_interpStrip_of_mem_verticalStrip_zero, isBigO_im_sub_im, cexp_neg_quadratic_isLittleO_abs_rpow_cocompact, EisensteinSeries.r_mul_max_le, norm_exp_ofReal, GaussianFourier.norm_cexp_neg_mul_sq_add_mul_I', norm_prime_cpow_le_one_half, norm_ofNat, isTheta_ofReal_right, Polynomial.sum_sq_norm_coeff_eq_circleAverage, Polynomial.mahlerMeasure_X_sub_C, exp_sub_sum_range_succ_isLittleO_pow, MeasureTheory.measureReal_abs_gt_le_integral_charFun, isBigO_ofReal_left, rotationOf_coe, norm_def, abs_im_div_norm_le_one, norm_int_of_nonneg, CuspFormClass.exists_bound, IsExpCmpFilter.isLittleO_log_norm_re, circleAverage_log_norm_add_const_eq_posLog, norm_natCast_cpow_pos_of_pos, re_le_norm, norm_add_mul_I, MeromorphicOn.circleAverage_log_norm, abs_re_le_norm, exp_sub_sum_range_isBigO_pow, tendsto_norm_tan_of_cos_eq_zero, DirichletCharacter.norm_LFunction_product_ge_one, IsExpCmpFilter.isLittleO_zpow_mul_exp, MeasureTheory.measureReal_abs_dual_gt_le_integral_charFunDual, Function.locallyFinsuppWithin.logCounting_divisor_eq_circleAverage_sub_const, EisensteinSeries.linear_isTheta_left, norm_of_nonneg', MeasureTheory.norm_one_sub_charFun_le_two, exists_norm_mul_eq_self, isTheta_cpow_const_rpow, arg_of_im_neg, norm_sub_one_sq_eqOn_sphere, ValueDistribution.proximity_zero_of_complexValued, sqrt_eq_real_add_ite, ext_norm_arg_iff, norm_jacobiThetaโ‚‚'_term_le, NumberField.canonicalEmbedding.norm_le_iff, NumberField.mixedEmbedding.normAtPlace_apply_of_isComplex, re_eq_neg_norm, tsum_sq_fourierCoeffOn, EisensteinSeries.linear_isTheta_right_add, circleAverage_log_norm_sub_const_eq_posLog, norm_exp, lim_im, circleAverage_log_norm_factorizedRational, isBigO_deriv_ofReal_cpow_const_atTop, Polynomial.leading_coeff_le_mahlerMeasure, AnalyticAt.harmonicAt_log_norm, MeasureTheory.measureReal_abs_inner_gt_le_integral_charFun, NumberField.norm_embedding_le_house, norm_sub_eq_iff, Polynomial.mahlerMeasure_of_degree_eq_one, LSeriesSummable.isBigO_rpow, cexp_neg_quadratic_isLittleO_rpow_atTop, cpow_ofReal_im, norm_I, IsPrimitiveRoot.norm'_eq_one, ModularFormClass.qExpansion_isBigO, isCauSeq_im, norm_eq_one_of_mem_rootsOfUnity, range_norm, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, HadamardThreeLines.eventuallyle, abs_re_lt_norm, Function.Periodic.norm_qParam, norm_exp_eq_iff_re_eq, ModularFormClass.bounded_at_infty_comp_ofComplex, CuspFormClass.exp_decay_atImInfty', arg_eq_nhds_of_im_pos, norm_cpow_inv_nat, integral_rpow_mul_exp_neg_mul_rpow, log_sub_logTaylor_isBigO, UnitDisc.norm_lt_one, ModularFormClass.bdd_at_infty_slash, UpperHalfPlane.IsZeroAtImInfty.exp_decay_atImInfty', hasSum_sq_fourierCoeff, RCLike.norm_to_complex, isBigO_ofReal_right, lim_norm, ValueDistribution.logCounting_zero_sub_logCounting_top_eq_circleAverage_sub_const, cpow_inv_two_im_eq_neg_sqrt, HadamardThreeLines.norm_le_interpStrip_of_mem_verticalClosedStripโ‚€โ‚, arg_eq_nhds_of_re_pos, SlashInvariantFormClass.norm_petersson_smul, Polynomial.logMahlerMeasure_const, DirichletCharacter.LFunctionTrivChar_isBigO_near_one_horizontal, norm_natCast_cpow_le_norm_natCast_cpow_iff, norm_natCast_cpow_le_norm_natCast_cpow_of_pos, norm_cpow_eq_rpow_re_of_nonneg, norm_exp_le_exp_norm, IsExpCmpFilter.isLittleO_cpow_exp, UnitAddTorus.hasSum_sq_mFourierCoeff, circleTransformDeriv_bound, norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, Polynomial.logMahlerMeasure_monomial, equiv_limAux, NumberField.InfinitePlace.eq_iff_eq, EisensteinSeries.linear_isTheta_right, norm_exp_sub_sum_le_exp_norm_sub_sum, Polynomial.logMahlerMeasure_C_mul_X_add_C, norm_log_natCast_le_rpow_div, arg_eq_nhds_of_re_neg_of_im_pos, norm_prod, volume_sum_rpow_lt_one, circleIntegrable_log_norm_sub_const, norm_exp_ofReal_mul_I, isTheta_ofReal_left, tendsto_log_nhdsWithin_im_nonneg_of_re_neg_of_im_zero, tsum_sq_fourierCoeff, IsExpCmpFilter.isLittleO_pow_mul_exp, norm_eq_sqrt_sq_add_sq, isTheta_deriv_ofReal_cpow_const_atTop, GaussianFourier.verticalIntegral_norm_le, borelCaratheodory, Polynomial.norm_root_le_one_of_mahlerMeasure_eq_one, CuspFormClass.exp_decay_atImInfty, norm_two, norm_cpow_le, arg_eq_nhds_of_re_neg_of_im_neg, isAbsoluteValueNorm, isLittleO_ofReal_right, DirichletCharacter.LFunction_isBigO_horizontal, Orientation.norm_kahler, Polynomial.norm_coeff_le_choose_mul_mahlerMeasure, abs_cpow_inv_two_im, norm_le_sqrt_two_mul_max, UpperHalfPlane.IsZeroAtImInfty.petersson_exp_decay_right, re_eq_norm, norm_exp_I_mul_ofReal, isCauSeq_exp, MeasureTheory.norm_charFun_le, norm_intCast, CStarAlgebra.exists_sum_four_unitary, norm_cpow_eq_rpow_re_of_pos, norm_mul, borelCaratheodory_zero, NumberField.mixedEmbedding.normAtComplexPlaces_apply_isComplex, IsExpCmpFilter.isLittleO_cpow_mul_exp, ModularForm.summable_eta_q, norm_eq_one_of_pow_eq_one, IsExpCmpFilter.isTheta_cpow_exp_re_mul_log, NumberField.InfinitePlace.apply, Polynomial.mahlerMeasure_le_sum_norm_coeff, EisensteinSeries.summand_bound, ModularFormClass.exp_decay_sub_atImInfty', neg_re_eq_norm, isCauSeq_re, integrableOn_Ioi_deriv_norm_ofReal_cpow, isLittleO_ofReal_left, sin_arg, NumberField.house.basis_repr_norm_le_const_mul_house, ValueDistribution.proximity_sub_proximity_inv_eq_circleAverage, cos_arg, norm_natCast_cpow_of_re_ne_zero, abs_re_div_norm_le_one, UnitDisc.sq_norm_lt_one, Function.Periodic.exp_decay_of_zero_at_inf, cpow_ofReal, equivRealProd_apply_le, lim_re, norm_jacobiThetaโ‚‚_term_fderiv_le, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, EisensteinSeries.linear_inv_isBigO_right, norm_mul_sin_arg, lim_eq_lim_im_add_lim_re, LSeries.norm_term_le_of_re_le_re, ModularGroup.coe_truncatedFundamentalDomain
instNormedAddCommGroup ๐Ÿ“–CompOp
884 mathmath: ArithmeticFunction.vonMangoldt.residueClass_eq, HurwitzZeta.hasSum_int_hurwitzZetaOdd, NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, TemperedDistribution.lineDerivOpCLM_eq, NumberField.mixedEmbedding.fundamentalDomain_integerLattice, MeasureTheory.Lp.toTemperedDistributionCLM_apply, Orientation.kahler_map_complex, UpperHalfPlane.mdifferentiable_num, TemperedDistribution.fourierInv_toTemperedDistributionCLM_eq, cos_eq_tsum, ModularForm.mul_slash_SL2, EulerSine.integral_cos_mul_cos_pow, ModularForm.smul_slash, nnnorm_exp_I_mul_ofReal, NumberField.mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, restrictScalars_one_smulRight', completedZeta_eq_tsum_of_one_lt_re, IsSelfAdjoint.quasispectrumRestricts, CuspFormClass.holo, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, MeasureTheory.charFun_eq_fourierIntegral', PeriodPair.hasFPowerSeriesAt_weierstrassPExcept, Real.hasFDerivAt_fourierChar_neg_bilinear_left, EisensteinSeries.hasSum_e2Summand_symmetricIcc, Real.fourierCoeff_tsum_comp_add, UnitAddTorus.coe_mFourierBasis, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, ModularFormClass.hasFPowerSeries_cuspFunction, NumberField.canonicalEmbedding.mem_span_latticeBasis, iteratedDeriv_even_cosh, ModularFormClass.qExpansionFormalMultilinearSeries_radius, PeriodPair.hasSumLocallyUniformly_weierstrassP, LSeries.term_sum, HurwitzZeta.hasSum_int_cosKernelโ‚€, HurwitzZeta.hasSum_int_hurwitzZetaEven, ofRealCLM_coe, kahler, areaForm, finrank_real_complex_fact', PeriodPair.coeff_weierstrassPExceptSeries, complexOfReal_hasDerivWithinAt, analyticAt_cosh, SlashInvariantForm.slash_action_eq', ModularForm.mul_slash, meromorphic_digamma, MeasureTheory.charFunDual_apply, norm_sub_mem_Icc_angle, PeriodPair.iteratedDeriv_weierstrassPExcept_self, LSeries.term_convolution', GammaIntegral_eq_mellin, PeriodPair.derivWeierstrassPExcept_sub, tsum_eisSummand_eq_riemannZeta_mul_eisensteinSeries, norm_jacobiThetaโ‚‚_term_fderiv_ge, NumberField.canonicalEmbedding.latticeBasis_apply, integral_comp_pi_polarCoord_symm, summableLocallyUniformlyOn_iteratedDerivWithin_cexp, PeriodPair.ฯ‰โ‚_div_two_notMem_lattice, span_fourier_closure_eq_top, PeriodPair.basis_one, OnePoint.isBoundedAt_iff_exists_SL2Z, HasDerivWithinAt.complexToReal_fderiv', Orientation.kahler_comp_rightAngleRotation', one_add_cpow_hasFPowerSeriesAt_zero, tsum_exp_neg_mul_int_sq, analyticOn_sin, GaussianFourier.integral_cexp_neg_mul_sq_norm, angle_exp_one, circleIntegral.integral_sub_inv_of_mem_ball, angle_div_right_eq_angle_mul_left, hasSum_one_div_nat_pow_mul_fourier, two_mul_riemannZeta_eq_tsum_int_inv_pow_of_even, nndist_self_conj, betaIntegral_scaled, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, fourierCoeffOn.const_mul, SlashInvariantForm.quotientFunc_mk, mellin_div_const, TemperedDistribution.lineDerivOp_fourier_eq, ModularForm.SL_slash, ofRealCLM_norm, ProbabilityTheory.hasDerivAt_integral_pow_mul_exp, NumberField.mixedEmbedding.mem_idealLattice, IsConformalMap.is_complex_or_conj_linear, iteratedDeriv_odd_sinh, convexHull_reProdIm, fourierIntegral_gaussian_innerProductSpace', fourier_gaussian_pi', MeasureTheory.charFun_eq_fourierIntegral, oangle, UnitAddTorus.mFourierSubalgebra_coe, iteratedDerivWithin_tsum_cexp_eq, PeriodPair.iteratedDeriv_derivWeierstrassPExcept_self, intervalIntegral.integral_ofReal, GaussianFourier.integral_cexp_neg_mul_sq_norm_add, PeriodPair.eqOn_deriv_weierstrassPExcept_derivWeierstrassPExcept, PeriodPair.weierstrassP_coe, hasStrictFDerivAt_exp_real, ModularForm.prod_slash, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.imPart, sum_cauchyPowerSeries_eq_integral, NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, UnitAddTorus.mFourierSubalgebra_closure_eq_top, nnnorm_ratCast, isSelfAdjoint_iff_isStarNormal_and_spectrumRestricts, angle_mul_left, analyticOnNhd_circleMap, NumberField.mixedEmbedding.commMap_apply_of_isComplex, hasSum_nat_jacobiTheta, differentiableOn_iteratedDerivWithin_cotTerm, PeriodPair.hasSum_derivWeierstrassPExcept, NumberField.mixedEmbedding.instNoAtomsMixedSpaceVolume, ValueDistribution.proximity_pow_zero, toBasis_orthonormalBasisOneI, ModularForm.prod_slash_sum_weights, NumberField.mixedEmbedding.convexBodyLT_volume, OnePoint.isBoundedAt_iff_forall_SL2Z, integral_rpow_mul_exp_neg_rpow, ZMod.completedLFunction_def_even, SchwartzMap.integral_fourierInv_smul_eq, SlashInvariantForm.quotientFunc_smul, volume_sum_rpow_le, PeriodPair.analyticAt_weierstrassPExcept, summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm, SchwartzMap.inner_toL2_toL2_eq, analyticWithinAt_cosh, MeasureTheory.SignedMeasure.toComplexMeasure_apply, ModularForm.tsum_logDeriv_eta_q, EisensteinSeries.summable_left_one_div_linear_sub_one_div_linear, mul_angle_le_norm_sub, coe_orthonormalBasisOneI, fourier_gaussian_innerProductSpace, OnePoint.isZeroAt_iff_exists_SL2Z, NumberField.mixedEmbedding.negAt_apply_snd, contDiff_cosh, analyticOn_cosh, EisensteinSeries.E2_slash_action, MeasureTheory.charFun_apply, CuspForm.coe_trace, EisensteinSeries.e2Summand_summable, reCLM_nnnorm, nndist_of_im_eq, Function.HasTemperateGrowth.toTemperedDistribution_apply, NumberField.mixedEmbedding.negAt_preimage, hasDerivAt_GammaIntegral, LSeries_iteratedDeriv, starConvex_ofReal_slitPlane, CuspForm.coeHom_apply, analyticOnNhd_univ_iff_differentiable, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, HurwitzZeta.hasSum_nat_sinZeta, EisensteinSeries.G2_slash_action, MeasureTheory.charFun_apply_real, taylorSeries_eq_on_ball', fourierCoeff_bernoulli_eq, summable_conj, analyticOn_sinh, PeriodPair.latticeBasis_zero, ZMod.LFunction_def_odd, EulerSine.integral_cos_mul_cos_pow_aux, starConvex_one_slitPlane, TemperedDistribution.instLineDerivLeftSMulReal, LindemannWeierstrass.exp_polynomial_approx, NumberField.mixedEmbedding.stdBasis_apply_isComplex_snd, TemperedDistribution.fourierInv_lineDerivOp_eq, UpperHalfPlane.mdifferentiable_inv_denom, hasStrictFDerivAt_cpow', NumberField.mixedEmbedding.negAt_signSet_apply_isComplex, InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_complexPlane, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, Orientation.kahler_eq_zero_iff, AddChar.sum_apply_eq_ite, PositiveLinearMap.preGNS_norm_def, ValueDistribution.proximity_inv, integral_comp_polarCoord_symm, PeriodPair.ฯ‰โ‚‚_div_two_notMem_lattice, UnitAddTorus.mFourierCoeff_toLp, PeriodPair.hasSum_derivWeierstrassP, PeriodPair.compl_lattice_diff_singleton_mem_nhds, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, NumberField.mixedEmbedding.convexBodySum_volume_eq_zero_of_le_zero, integral_exp_mul_complex_Ioi, setIntegral_Ioi_zero_cpow, TemperedDistribution.instFourierAdd, PeriodPair.hasSumLocallyUniformly_derivWeierstrassP, sameRay_of_arg_eq, SlashInvariantForm.coe_translate, NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, MeasureTheory.ComplexMeasure.singularPart_add_withDensity_rnDeriv_eq, Orientation.kahler_swap, PeriodPair.hasFPowerSeriesAt_derivWeierstrassPExcept, cauchyPowerSeries_apply, summable_eisSummand, LSeries_analyticOnNhd, TemperedDistribution.instFourierSMul, contDiff_circleMap, HurwitzZeta.hasSum_hurwitzZeta_of_one_lt_re, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, convex_halfSpace_re_le, reCLM_coe, orthonormal_fourier, UpperHalfPlane.contMDiff_coe, CuspForm.holo', analyticAt_sin, Differentiable.hasFPowerSeriesOnBall, PeriodPair.mem_lattice, BoundedContinuousFunction.mem_charPoly, Orientation.kahler_comp_rightAngleRotation, EisensteinSeries.tsum_symmetricIco_linear_sub_linear_add_one_eq_zero, BoundedContinuousFunction.charAlgHom_apply, ArithmeticFunction.vonMangoldt.residueClass_apply, TemperedDistribution.delta_apply, PeriodPair.analyticOnNhd_derivWeierstrassPExcept, fourierIntegral_gaussian_pi, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow, integral_exp_mul_complex, DifferentiableOn.contDiffOn, EisensteinSeries.G2_eq_tsum_symmetricIco, equivRealProdCLM_symm_apply, TemperedDistribution.instContinuousFourier, cos_eq_tsum', cot_series_rep', NumberField.canonicalEmbedding.integralBasis_repr_apply, integral_exp_neg_rpow, PeriodPair.basis_zero, NumberField.mixedEmbedding.negAt_signSet_apply_isReal, dist_self_conj, hasSum_jacobiThetaโ‚‚_term, hasFDerivAt_jacobiThetaโ‚‚_term, NumberField.mixedEmbedding.fundamentalDomain_idealLattice, UpperHalfPlane.contMDiff_inv_denom, gelfandStarTransform_symm_apply, orthonormalBasisOneI_repr_apply, HurwitzZeta.hasSum_nat_completedCosZeta, tendsto_sub_mul_tsum_nat_cpow, Summable_cotTerm, SchwartzMap.delta_apply, norm_cauchyPowerSeries_le, summable_jacobiThetaโ‚‚_term_fderiv_iff, fourier_gaussian_innerProductSpace', HurwitzZeta.hasSum_nat_hurwitzZetaEven, HurwitzZeta.hasSum_int_cosKernel, ZMod.completedLFunction_def_odd, hasSum_fourier_series_L2, NumberField.mixedEmbedding.mem_span_fractionalIdealLatticeBasis, PeriodPair.isClosed_lattice, integral_cpow, ProbabilityTheory.iteratedDeriv_complexMGF, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, contDiffAt_log, convex_halfSpace_im_gt, GaussianFourier.integrable_cexp_neg_mul_sum_add, hasStrictFDerivAt_cpow, differentiable_iteratedDeriv_sin, AddChar.expect_apply_eq_zero_iff_ne_zero, EisensteinSeries.linear_right_summable, PositiveLinearMap.preGNS_inner_def, LSeries_eq_mul_integral_of_nonneg, angle_mul_right, PeriodPair.periodic_derivWeierstrassP, EisensteinSeries.summable_linear_left_mul_linear_left, riemannZeta_eulerProduct_exp_log, HasStrictFDerivAt.cexp, iteratedDeriv_odd_sin, MeasureTheory.ComplexMeasure.equivSignedMeasure_apply, EulerSine.sin_pi_mul_eq, integral_mul_cexp_neg_mul_sq, NumberField.mixedEmbedding.span_idealLatticeBasis, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, zeta_eq_tsum_one_div_nat_cpow, AddChar.sum_apply_eq_zero_iff_ne_zero, ProbabilityTheory.analyticAt_complexMGF, HurwitzZeta.hurwitzEvenFEPair_zero_symm, UnitAddTorus.coeFn_mFourierLp, circleIntegral.integral_sub_zpow_of_undef, HasDerivWithinAt.complexToReal_fderiv, TemperedDistribution.fourier_toTemperedDistributionCLM_eq, hasSum_ofReal, ofRealCLM_nnnorm, imCLM_norm, intervalIntegral.intervalIntegrable_cpow, integral_exp_mul_I_eq_sinc, PeriodPair.differentiableOn_derivWeierstrassP, PeriodPair.weierstrassPExcept_def, PeriodPair.meromorphic_derivWeierstrassP, HurwitzZeta.hasSum_int_cosZeta, hasSum_jacobiThetaโ‚‚_term_fderiv, NumberField.mixedEmbedding.mem_span_latticeBasis, TemperedDistribution.fourierTransformInv_toTemperedDistributionCLM_eq, analyticOnNhd_sin, hasSum_sin, Orientation.kahler_neg_orientation, HasFDerivWithinAt.cexp, EisensteinSeries.D2_inv, EisensteinSeries.hasSum_e2Summand_symmetricIco, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, HasDerivAt.complexToReal_fderiv', hasSum_jacobiThetaโ‚‚'_term, NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem, SchwartzMap.toTemperedDistributionCLM_apply_apply, EisensteinSeries.q_expansion_riemannZeta, HasDerivAt.complexToReal_fderiv, integral_exp_mul_I_eq_sin, MeasureTheory.SignedMeasure.re_toComplexMeasure, one_add_cpow_hasFPowerSeriesAt_zero, HurwitzZeta.hasSum_nat_cosZeta, NumberField.mixedEmbedding.covolume_idealLattice, NumberField.mixedEmbedding.volume_preserving_negAt, OnePoint.isZeroAt_iff_forall_SL2Z, hasSum_cauchyPowerSeries_integral, UpperHalfPlane.contMDiff_num, UpperHalfPlane.mdifferentiable_denom, angle_eq_abs_arg, LSeries.term_convolution, NumberField.mixedEmbedding.negAt_apply_isComplex, hasFDerivAt_cpow, ProbabilityTheory.isGaussian_iff_charFun_eq, OnePoint.isBoundedAt_iff, convex_halfSpace_im_lt, Polynomial.rootSet_derivative_subset_convexHull_rootSet, HasFDerivAt.cexp, NumberField.mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, LSeriesSummable.sum, HurwitzZeta.hasSum_expZeta_of_one_lt_re, eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet, OnePoint.IsZeroAt.smul_iff, HurwitzZeta.hasSum_int_completedHurwitzZetaOdd, one_div_sub_sq_hasFPowerSeriesOnBall_zero, DirichletCharacter.summable_neg_log_one_sub_mul_prime_cpow, EisensteinSeries.linear_left_summable, PeriodPair.hasSumLocallyUniformly_weierstrassPExcept, ofRealCLM_apply, cfcHom_real_eq_restrict, NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem, IsSelfAdjoint.spectrumRestricts, eqOn_iteratedDeriv_cotTerm, tsum_riemannZetaSummand, restrictScalars_one_smulRight, summable_ofReal, one_div_one_sub_pow_hasFPowerSeriesOnBall_zero, MeasureTheory.integral_charFun_Icc, ZMod.completedLFunction_eq, UnitAddTorus.orthonormal_mFourier, dist_of_im_eq, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, analyticOnNhd_cexp, NumberField.mixedEmbedding.det_basisOfFractionalIdeal_eq_norm, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, fourierCoeff_toLp, ProbabilityTheory.hasDerivAt_complexMGF, ProbabilityTheory.IsGaussian.charFunDual_eq, coe_fourierBasis, tsum_exp_neg_quadratic, ModularFormClass.qExpansion_coeff, CuspForm.coe_translate, PeriodPair.derivWeierstrassP_sub_coe, isAddQuotientCoveringMap_exp, hasSum_sq_fourierCoeffOn, SpectrumRestricts.real_iff, torusIntegral_const_mul, cosh_eq_tsum, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, integral_exp_neg_mul_rpow, contDiff_exp, nndist_of_re_eq, le_radius_cauchyPowerSeries, HurwitzZeta.hasSum_int_sinKernel, qExpansion_sub, hasMellin_one_Ioc, QuasispectrumRestricts.real_iff, TemperedDistribution.instLineDerivSMulReal, cot_series_rep, MeasureTheory.Measure.toTemperedDistribution_apply, analyticOn_iff_differentiableOn, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, norm_sub_le_angle, PeriodPair.weierstrassP_add_coe, NumberField.mixedEmbedding.stdBasis_apply_isComplex_fst, TemperedDistribution.fourier_lineDerivOp_eq, TemperedDistribution.fourier_delta_zero, PeriodPair.instProperSpaceSubtypeComplexMemSubmoduleIntLattice, volume_sum_rpow_lt, analyticOn_cos, ModularForm.coeHom_apply, MeromorphicNFOn.Gamma, hasDerivAt_logTaylor, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow, ModularForm.slash_action_eq'_iff, lintegral_comp_polarCoord_symm, NumberField.mixedEmbedding.fundamentalDomain_stdBasis, NumberField.mixedEmbedding.span_latticeBasis, UnitAddTorus.instContinuousSMulComplexSubtypeAEEqFunVolumeMemAddSubgroupLp, integral_cexp_quadratic, TemperedDistribution.lineDerivOp_toTemperedDistributionCLM_eq, isSelfAdjoint_iff_isStarNormal_and_quasispectrumRestricts, orthonormalBasisOneI_repr_symm_apply, UnitAddTorus.hasSum_mFourier_series_L2, dist_eq, TemperedDistribution.laplacian_eq_sum, NumberField.mixedEmbedding.stdBasis_repr_eq_matrixToStdBasis_mul, MeasureTheory.ComplexMeasure.HaveLebesgueDecomposition.rePart, iteratedDeriv_add_one_sinh, TemperedDistribution.instContinuousLineDeriv, iteratedDeriv_even_cos, iteratedDeriv_add_one_sin, volume_preserving_equiv_real_prod, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, ZMod.LFunction_def_even, one_div_sub_pow_hasFPowerSeriesOnBall_zero, QuadraticForm.equivalent_sum_squares, HadamardThreeLines.diffContOnCl_interpStrip, angle_div_left_eq_angle_mul_right, HurwitzZeta.hasSum_nat_completedSinZeta, hasFPowerSeriesOn_cauchy_integral, UpperHalfPlane.contMDiff_denom_zpow, circleIntegral_div_sub_of_differentiable_on_off_countable, contDiffOn_tsum_cexp, convex_halfSpace_re_ge, PeriodPair.latticeBasis_one, DifferentiableOn.hasFPowerSeriesOnBall, analyticAt_sinh, NumberField.mixedEmbedding.covolume_integerLattice, Orientation.kahler_apply_self, PeriodPair.weierstrassP_sub_coe, analyticOn_univ_iff_differentiable, conjCLE_nnorm, HasStrictDerivAt.complexToReal_fderiv', fourierIntegral_gaussian_innerProductSpace, Differentiable.contDiff, iteratedDeriv_add_one_cos, MeasureTheory.SignedMeasure.toComplexMeasure_apply_re, HurwitzZeta.hurwitzOddFEPair_fโ‚€, EisensteinSeries.qExpansion_identity_pnat, UpperHalfPlane.petersson_slash_SL, Orientation.kahler_rotation_left', zeta_eq_tsum_one_div_nat_add_one_cpow, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, convex_halfSpace_im_ge, angle_le_mul_norm_sub, nnnorm_ofNat, cot_pi_mul_contDiffWithinAt, ModularForm.SL_slash_def, PeriodPair.hasSum_weierstrassP, convex_halfSpace_re_lt, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, PeriodPair.coeff_weierstrassPSeries, PeriodPair.isOpen_compl_lattice_diff, restrictScalars_toSpanSingleton, Orientation.normSq_kahler, volume_closedBall, nnnorm_nnratCast, hasSum_cos', PeriodPair.derivWeierstrassP_coe, locallyFinsuppWithin.logCounting_divisor, NumberField.mixedEmbedding.negAt_symm, fourierSubalgebra_coe, contDiffAt_tan, HurwitzZeta.hurwitzOddFEPair_ฮต, analyticWithinAt_sinh, analyticOnNhd_cosh, exp_sub_sum_range_succ_isLittleO_pow, NumberField.mixedEmbedding.volume_fundamentalDomain_fractionalIdealLatticeBasis, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIntegerLattice, MeasureTheory.measureReal_abs_gt_le_integral_charFun, NumberField.mixedEmbedding.negAt_apply_isReal_and_mem, hasFDerivAt_jacobiThetaโ‚‚, NumberField.mixedEmbedding.volume_negAt_plusPart, NumberField.mixedEmbedding.convexBodyLT'_volume, OnePoint.IsBoundedAt.smul_iff, TemperedDistribution.fourierTransform_apply, contDiff_sinh, tendsto_logDeriv_euler_cot_sub, SlashInvariantForm.coe_trace, isConformalMap_complex_linear_conj, NumberField.mixedEmbedding.iUnion_negAt_plusPart_union, exp_sub_sum_range_isBigO_pow, EisensteinSeries.summable_linear_sub_mul_linear_add, MeasureTheory.measureReal_abs_dual_gt_le_integral_charFunDual, Orientation.kahler_rightAngleRotation_left, Orientation.kahler_comp_linearIsometryEquiv, HurwitzZeta.hasSum_nat_hurwitzZetaOdd, cfcโ‚™Hom_real_eq_restrict, PeriodPair.latticeEquiv_symm_apply, MeasureTheory.ComplexMeasure.im_apply, betaIntegral_convergent, EisensteinSeries.tsum_tsum_symmetricIco_sub_eq, enorm_exp_I_mul_ofReal, NumberField.canonicalEmbedding.mem_rat_span_latticeBasis, PeriodPair.hasSumLocallyUniformly_derivWeierstrassPExcept, ModularForm.summable_logDeriv_one_sub_eta_q, LSeries_sum, analyticOn_cexp, span_fourierLp_closure_eq_top, circleIntegral.integral_sub_zpow_of_ne, Orientation.kahler_rotation_left, LindemannWeierstrass.integral_exp_mul_eval, ModularFormClass.hasSum_qExpansion_of_abs_lt, LSeries.iteratedDeriv_alternating, conjCLE_enorm, hasSum_conj, EisensteinSeries.q_expansion_bernoulli, circleIntegral.integral_smul_const, NumberField.mixedEmbedding.volume_eq_two_pow_mul_two_pi_pow_mul_integral, InnerProductSpace.laplacian_eq_iteratedFDeriv_complexPlane, NumberField.mixedEmbedding.injective_mixedSpaceOfRealSpace, SchwartzMap.integral_fourier_mul_eq, volume_preserving_equiv_pi, norm_sub_one_sq_eqOn_sphere, ValueDistribution.proximity_zero_of_complexValued, tsum_dirichletSummand, EulerSine.tendsto_integral_cos_pow_mul_div, circleIntegrable_sub_zpow_iff, Polynomial.fourierCoeff_toAddCircle_natCast, conjCLE_apply, nnnorm_natCast, NumberField.mixedEmbedding.volume_eq_zero, nndist_conj_self, NumberField.mixedEmbedding.stdBasis_apply_isReal, DirichletCharacter.LSeries_eulerProduct_exp_log, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, MeasureTheory.ComplexMeasure.equivSignedMeasureโ‚—_symm_apply, PeriodPair.analyticOnNhd_derivWeierstrassP, GaussianFourier.integral_cexp_neg_mul_sq_add_real_mul_I, NumberField.mixedEmbedding.convexBodyLT_convex, Orientation.kahler_mul, GaussianFourier.integral_cexp_neg_mul_sum_add, tsum_sq_fourierCoeffOn, ModularFormClass.qExpansion_coeff_eq_circleIntegral, ProbabilityTheory.isGaussian_iff_charFunDual_eq, one_div_one_sub_cpow_hasFPowerSeriesOnBall_zero, fourierIntegral_gaussian, ArithmeticFunction.vonMangoldt.LSeries_residueClass_eq, PeriodPair.meromorphic_weierstrassP, EisensteinSeries.tendsto_double_sum_S_act, sinh_eq_tsum, HurwitzZeta.hasSum_nat_hurwitzZetaEven_of_mem_Icc, NumberField.mixedEmbedding.instIsZLatticeRealMixedSpaceIdealLattice, PeriodPair.analyticAt_derivWeierstrassPExcept, TemperedDistribution.instFourierInvSMul, imCLM_coe, integral_gaussian_sq_complex, HurwitzZeta.hurwitzOddFEPair_gโ‚€, PeriodPair.instDiscreteTopologySubtypeComplexMemSubmoduleIntLattice, Orientation.kahler_map, TemperedDistribution.instFourierInvAdd, EisensteinSeries.summable_e2Summand_symmetricIcc, UnitAddTorus.hasSum_prod_mFourierCoeff, NumberField.mixedEmbedding.latticeBasis_apply, circleIntegral.circleIntegral_congr_codiscreteWithin, TemperedDistribution.fourierInv_apply, sin_eq_tsum, HurwitzZeta.hurwitzOddFEPair_f, fourierCoeff.const_mul, MeasureTheory.measureReal_abs_inner_gt_le_integral_charFun, SlashInvariantForm.slash_S_apply, TemperedDistribution.fourierTransform_toTemperedDistributionCLM_eq, one_add_cpow_hasFPowerSeriesOnBall_zero, hasSum_conj', TemperedDistribution.instLineDerivAdd, GammaSeq_eq_approx_Gamma_integral, hasSum_taylorSeries_neg_log, nnnorm_exp_ofReal_mul_I, NumberField.mixedEmbedding.commMap_apply_of_isReal, TemperedDistribution.instLineDerivSMulComplex, LSeries_analyticOn, iteratedDeriv_odd_cos, Function.Complex.hasTemperateGrowth_ofReal, log_eq_integral, equivRealProdCLM_symm_apply_re, one_div_one_sub_sq_hasFPowerSeriesOnBall_zero, NumberField.mixedEmbedding.latticeBasis_repr_apply, dist_mk, SchwartzMap.integral_fourierInv_mul_eq, TemperedDistribution.laplacian_toTemperedDistributionCLM_eq, summable_one_div_nat_cpow, logDeriv_prod_sineTerm_eq_sum_cotTerm, ValueDistribution.proximity_pow_top, summable_prod_eisSummand, mdifferentiable_jacobiTheta, NumberField.mixedEmbedding.normAtPlace_negAt, EisensteinSeries.G2_eq_tsum_cexp, sameRay_iff, PeriodPair.hasSum_weierstrassPExcept, ProbabilityTheory.hasDerivAt_iteratedDeriv_complexMGF, NumberField.mixedEmbedding.finrank, SchwartzMap.integral_fourier_smul_eq, imCLM_nnnorm, HurwitzZeta.hurwitzOddFEPair_k, EisensteinSeries.qExpansion_identity, iteratedDeriv_even_sin, UpperHalfPlane.contMDiffAt_ofComplex, fourierSubalgebra_closure_eq_top, ModularForm.prod_fintype_slash, GaussianFourier.integral_cexp_neg_sum_mul_add, NumberField.mixedEmbedding.fractionalIdealLatticeBasis_apply, circleIntegrable_sub_inv_iff, sameRay_iff_arg_div_eq_zero, ModularForm.holo', tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, starConvex_slitPlane, ProbabilityTheory.analyticOn_complexMGF, integral_rpow_mul_exp_neg_mul_rpow, NumberField.mixedEmbedding.negAt_apply_norm_isReal, angle_one_left, HurwitzZeta.hasSum_int_sinZeta, iteratedDeriv_even_sinh, iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum, ArithmeticFunction.LSeries_zeta_eulerProduct_exp_log, ModularFormClass.hasSum_qExpansion_of_norm_lt, volume_ball, TemperedDistribution.derivCLM_toTemperedDistributionCLM_eq, DifferentiableOn.analyticOnNhd, ModularFormClass.bdd_at_infty_slash, jacobiTheta_eq_tsum_nat, hasSum_sq_fourierCoeff, differentiable_iteratedDeriv_sinh, LSeries.term_sum_apply, UpperHalfPlane.contMDiffAt_iff, Orientation.kahler_apply_apply, UpperHalfPlane.instIsManifoldComplexModelWithCornersSelfTopWithTopENat, taylorSeries_eq_on_eball', UnitAddTorus.mFourierBasis_repr, angle_one_right, ModularForm.slash_def, Function.Periodic.contDiff_qParam, MeasureTheory.ComplexMeasure.absolutelyContinuous_ennreal_iff, PeriodPair.differentiableOn_weierstrassPExcept, analyticOnNhd_iff_differentiableOn, conjCLE_norm, MeasureTheory.Lp.ker_toTemperedDistributionCLM_eq_bot, MeasureTheory.Lp.toTemperedDistribution_toLp_eq, fourierBasis_repr, PeriodPair.derivWeierstrassPExcept_add_coe, analyticAt_of_differentiable_on_punctured_nhds_of_continuousAt, iteratedDeriv_add_one_cosh, CuspFormClass.zero_at_infty_slash, PeriodPair.differentiableOn_weierstrassP, UnitAddTorus.span_mFourier_closure_eq_top, TemperedDistribution.laplacian_apply_apply, ModularForm.is_invariant_one', imCLM_enorm, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, UpperHalfPlane.mdifferentiable_coe, integral_complex_ofReal, summable_cotTerm, Orientation.kahler_rotation_right, ofRealCLM_enorm, integral_Ioi_cpow_of_lt, ModularFormClass.analyticAt_cuspFunction_zero, NumberField.mixedEmbedding.volume_fundamentalDomain_latticeBasis, TemperedDistribution.lineDerivOp_apply_apply, HadamardThreeLines.diffContOnCl_invInterpStrip, MeasureTheory.ComplexMeasure.re_apply, intervalIntegral.intervalIntegrable_cpow', UnitAddTorus.hasSum_sq_mFourierCoeff, TemperedDistribution.lineDerivOp_fourierInv_eq, hasSum_taylorSeries_log, HurwitzZeta.hurwitzOddFEPair_g, circleTransformDeriv_bound, PeriodPair.hasSum_sumInvPow, hasFPowerSeriesOnBall_of_differentiable_off_countable, lintegral_comp_pi_polarCoord_symm, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, analyticWithinAt_sin, conformalAt_iff_differentiableAt_or_differentiableAt_comp_conj, analyticAt_clog, LSeriesHasSum.sum, ProbabilityTheory.IsGaussian.charFun_eq, equivRealProdCLM_symm_apply_im, integral_gaussian_complex, complexOfReal_hasDerivAt, Real.hasFDerivAt_fourierChar_neg_bilinear_right, summable_bernoulli_fourier, PeriodPair.periodic_weierstrassP, SchwartzMap.integral_inner_fourier_fourier, ModularFormClass.holo, EisensteinSeries.summable_e2Summand_symmetricIco, GaussianFourier.integrable_cexp_neg_sum_mul_add, hasSum_sinh, integral_exp_mul_complex_Iic, circleIntegral.integral_sub_center_inv, MeasureTheory.Lp.toTemperedDistribution_apply, TemperedDistribution.smulLeftCLM_const, iteratedDeriv_cexp_const_mul, hasStrictFDerivAt_log_real, EisensteinSeries.summable_right_one_div_linear_sub_one_div_linear_succ, hasSum_sin', jacobiThetaโ‚‚_fderiv_undef, NumberField.mixedEmbedding.euclidean.finrank, EisensteinSeries.summable_linear_right_add_one_mul_linear_right, ModularForm.is_invariant_const, nnnorm_I, fourierCoeff_liftIoc_eq, volume_sum_rpow_lt_one, betaIntegral_convergent_left, hasSum_one_div_pow_mul_fourier_mul_bernoulliFun, TemperedDistribution.instContinuousFourierInv, NumberField.mixedEmbedding.measurableSet_negAt_plusPart, MeasureTheory.SignedMeasure.toComplexMeasure_apply_im, sin_eq_tsum', one_add_cpow_hasFPowerSeriesOnBall_zero, reCLM_norm, ModularForm.SL_slash_apply, ZMod.LFunction_residue_one, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, NumberField.mixedEmbedding.convexBodySum_convex, PeriodPair.mul_ฯ‰โ‚_add_mul_ฯ‰โ‚‚_mem_lattice, convex_halfSpace_im_le, MeasureTheory.ComplexMeasure.toComplexMeasure_to_signedMeasure, NumberField.mixedEmbedding.fundamentalCone.volume_normLeOne, TemperedDistribution.fourier_apply, hasMellin_cpow_Ioc, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, tsum_sq_fourierCoeff, VectorFourier.integral_fourierIntegral_smul_eq_flip, differentiable_iteratedDeriv_cos, SchwartzMap.coe_apply, integral_mul_cpow_one_add_sq, DifferentiableOn.analyticAt, ofReal_tsum, MeasureTheory.ComplexMeasure.equivSignedMeasureโ‚—_apply, AddChar.coe_complexBasis, DifferentiableAt.conformalAt, one_div_one_sub_hasFPowerSeriesOnBall_zero, UpperHalfPlane.mdifferentiableAt_iff, edist_of_re_eq, rightAngleRotation, UpperHalfPlane.IsZeroAtImInfty.slash, PeriodPair.analyticOnNhd_weierstrassPExcept, analyticAt_cos, analyticOnNhd_cos, imCLM_apply, ArithmeticFunction.iteratedDeriv_LSeries_alternating, NumberField.mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, PeriodPair.indep, isConformalMap_complex_linear, ModularForm.coe_translate, SchwartzMap.tsum_eq_tsum_fourierIntegral, analyticWithinAt_cexp, Orientation.kahler_rightAngleRotation_right, MeasureTheory.intervalIntegrable_charFun, hasSum_arctan, MeasureTheory.charFun_eq_integral_innerProbChar, edist_of_im_eq, iteratedDeriv_odd_cosh, contDiff_sin, TemperedDistribution.derivCLM_apply_apply, HurwitzZeta.hasSum_int_completedCosZeta, NumberField.mixedEmbedding.volume_eq_two_pi_pow_mul_integral, contDiff_cos, hasSum_cosh, Orientation.norm_kahler, NumberField.mixedEmbedding.disjoint_span_commMap_ker, taylorSeries_eq_of_entire', conj_tsum, Meromorphic.Gamma, ModularForm.coe_trace, HasStrictDerivAt.complexToReal_fderiv, convex_halfSpace_re_gt, enorm_exp_ofReal_mul_I, AddChar.complexBasis_apply, ProbabilityTheory.analyticOnNhd_complexMGF, NumberField.mixedEmbedding.convexBodySum_volume, SlashInvariantForm.coeHom_injective, EisensteinSeries.eisensteinSeries_slash_apply, TemperedDistribution.fourierTransformInv_apply, hasSum_cos, ModularFormClass.qExpansionFormalMultilinearSeries_coeff, UpperHalfPlane.contMDiff_smul, HurwitzZeta.hasSum_int_completedSinZeta, eqOn_iteratedDerivWithin_cotTerm_integerComplement, zeta_nat_eq_tsum_of_gt_one, HurwitzZeta.hasSum_nat_hurwitzZetaOdd_of_mem_Icc, AddChar.expect_apply_eq_ite, reCLM_enorm, UpperHalfPlane.contMDiff_denom, nnnorm_real, BoundedContinuousFunction.separatesPoints_charPoly, one_div_sub_sq_sub_one_div_sq_hasFPowerSeriesOnBall_zero, PeriodPair.lattice_eq_span_range_basis, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, PeriodPair.ฯ‰โ‚_mem_lattice, log_inv_eq_integral, OnePoint.isZeroAt_iff, UnitAddTorus.span_mFourierLp_closure_eq_top, ZMod.LFunction_dft, PeriodPair.analyticOnNhd_weierstrassP, HurwitzZeta.hasSum_int_completedHurwitzZetaEven, UpperHalfPlane.mdifferentiable_denom_zpow, MeromorphicOn.Gamma, integral_cpow_mul_exp_neg_mul_Ioi, dist_of_re_eq, NumberField.mixedEmbedding.commMap_canonical_eq_mixed, SlashInvariantFormClass.slash_action_eq, integral_cos_mul_complex, Polynomial.fourierCoeff_toAddCircle, hasFPowerSeriesOnBall_ofScalars_mul_add_zero, hasSum_iff, NumberField.mixedEmbedding.norm_negAt, SlashInvariantForm.slash_action_eqn, summable_pow_mul_cexp, ModularFormClass.hasSum_qExpansion, ModularFormClass.qExpansion_coeff_eq_intervalIntegral, approx_Gamma_integral_tendsto_Gamma_integral, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, isConformalMap_iff_is_complex_or_conj_linear, PeriodPair.ฯ‰โ‚‚_mem_lattice, summable_jacobiThetaโ‚‚'_term_iff, UpperHalfPlane.mdifferentiable_iff, analyticAt_iff_eventually_differentiableAt, analyticOnNhd_sinh, analyticWithinAt_cos, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, ModularForm.is_invariant_one, PeriodPair.derivWeierstrassPExcept_def, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, UpperHalfPlane.mdifferentiableAt_ofComplex, LSeries_eq_mul_integral', Summable.hasSumUniformlyOn_log_one_add, fourier_gaussian_pi, Real.fourier_smul_convolution_eq, dist_conj_self, EisensteinSeries.D2_mul, TemperedDistribution.laplacianCLM_apply, continuousAt_gaussian_integral, coeFn_fourierLp, taylorSeries_eq_on_emetric_ball', fourierCoeff_liftIco_eq, NumberField.mixedEmbedding.disjoint_negAt_plusPart, NumberField.mixedEmbedding.volume_fundamentalDomain_stdBasis, PositiveLinearMap.preGNS_norm_sq, EulerSine.integral_cos_mul_cos_pow_even, circleIntegral.integral_const_mul, UpperHalfPlane.IsBoundedAtImInfty.slash, Differentiable.analyticAt, equivRealProdCLM_apply, NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart, MeasureTheory.charFun_eq_integral_probChar, one_div_sub_hasFPowerSeriesOnBall_zero, EulerProduct.exp_tsum_primes_log_eq_tsum, fourierIntegral_gaussian_pi', PeriodPair.finrank_lattice, PeriodPair.derivWeierstrassP_add_coe, integral_gaussian_complex_Ioi, ModularForm.SL_smul_slash, NumberField.mixedEmbedding.convexBodyLT'_convex, TemperedDistribution.smulLeftCLM_apply_apply, summable_jacobiThetaโ‚‚_term_iff, conjCLE_coe, NumberField.mixedEmbedding.mem_rat_span_latticeBasis, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly, BoundedContinuousFunction.char_mem_charPoly, MeasureTheory.SignedMeasure.im_toComplexMeasure, NumberField.mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, rotation, differentiableAt_iteratedDerivWithin_cexp, pi_mul_cot_pi_q_exp, PeriodPair.weierstrassPExcept_add, SchwartzMap.tsum_eq_tsum_fourier, NumberField.mixedEmbedding.normAtAllPlaces_normAtAllPlaces, norm_jacobiThetaโ‚‚_term_fderiv_le, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, PeriodPair.instIsZLatticeRealComplexLattice, Summable.tendstoUniformlyOn_tsum_nat_log_one_add, UpperHalfPlane.mdifferentiable_smul, dist_eq_re_im, ModularForm.slash_apply, angle_exp_exp, restrictScalars_toSpanSingleton', Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero, differentiable_iteratedDeriv_cosh, rectangle_eq_convexHull, NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply, analyticAt_cexp, EisensteinSeries.G2_T_transform, reCLM_apply, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm, PeriodPair.differentiableOn_derivWeierstrassPExcept, UpperHalfPlane.petersson_slash, DifferentiableOn.analyticOn, EisensteinSeries.tsum_symmetricIco_tsum_sub_eq, fourierCoeff_fourier
limAux ๐Ÿ“–CompOp
1 mathmath: equiv_limAux

Theorems

NameKindAssumesProvesValidatesDepends On
abs_im_div_norm_le_one ๐Ÿ“–mathematicalโ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
Norm.norm
Complex
instNorm
Real.instOne
โ€”norm_zero
div_zero
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
abs_div
Real.instIsStrictOrderedRing
abs_norm
div_le_iffโ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_pos_iff
one_mul
abs_im_eq_norm ๐Ÿ“–mathematicalโ€”abs
Real
Real.lattice
Real.instAddGroup
im
Norm.norm
Complex
instNorm
re
Real.instZero
โ€”not_iff_not
LE.le.lt_iff_ne
abs_im_le_norm
abs_im_lt_norm
abs_im_le_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
im
Norm.norm
Complex
instNorm
โ€”Real.abs_le_sqrt
normSq_apply
sq
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
abs_im_lt_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
im
Norm.norm
Complex
instNorm
โ€”MulZeroClass.mul_zero
mul_one
zero_sub
abs_neg
norm_mul
norm_I
add_zero
abs_re_lt_norm
abs_re_div_norm_le_one ๐Ÿ“–mathematicalโ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
re
Norm.norm
Complex
instNorm
Real.instOne
โ€”norm_zero
div_zero
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
abs_div
Real.instIsStrictOrderedRing
abs_norm
div_le_iffโ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_pos_iff
one_mul
abs_re_eq_norm ๐Ÿ“–mathematicalโ€”abs
Real
Real.lattice
Real.instAddGroup
re
Norm.norm
Complex
instNorm
im
Real.instZero
โ€”not_iff_not
LE.le.lt_iff_ne
abs_re_le_norm
abs_re_lt_norm
abs_re_le_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
re
Norm.norm
Complex
instNorm
โ€”mul_self_le_mul_self_iff
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
abs_mul_abs_self
norm_mul_self_eq_normSq
re_sq_le_normSq
abs_re_lt_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
re
Norm.norm
Complex
instNorm
โ€”norm_def
Real.lt_sqrt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
normSq_apply
sq_abs
sq
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
dist_conj_self ๐Ÿ“–mathematicalโ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
abs
Real.lattice
Real.instAddGroup
im
โ€”Nat.instAtLeastTwoHAddOfNat
dist_of_re_eq
conj_re
conj_im
dist_comm
Real.dist_eq
sub_neg_eq_add
two_mul
abs_mul
Real.instIsOrderedRing
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_lt_two'
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Norm.norm
instNorm
instSub
โ€”โ€”
dist_eq_re_im ๐Ÿ“–mathematicalโ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real.sqrt
Real
Real.instAdd
Monoid.toNatPow
Real.instMonoid
Real.instSub
re
im
โ€”sq
dist_mk ๐Ÿ“–mathematicalโ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real.sqrt
Real
Real.instAdd
Monoid.toNatPow
Real.instMonoid
Real.instSub
โ€”dist_eq_re_im
dist_of_im_eq ๐Ÿ“–mathematicalimDist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real
Real.pseudoMetricSpace
re
โ€”dist_eq_re_im
sub_self
zero_pow
two_ne_zero
add_zero
Real.sqrt_sq_eq_abs
Real.dist_eq
dist_of_re_eq ๐Ÿ“–mathematicalreDist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real
Real.pseudoMetricSpace
im
โ€”dist_eq_re_im
sub_self
zero_pow
two_ne_zero
zero_add
Real.sqrt_sq_eq_abs
Real.dist_eq
dist_self_conj ๐Ÿ“–mathematicalโ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
abs
Real.lattice
Real.instAddGroup
im
โ€”Nat.instAtLeastTwoHAddOfNat
dist_comm
dist_conj_self
edist_of_im_eq ๐Ÿ“–mathematicalimEDist.edist
Complex
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
instNormedAddCommGroup
Real
Real.metricSpace
re
โ€”edist_nndist
nndist_of_im_eq
edist_of_re_eq ๐Ÿ“–mathematicalreEDist.edist
Complex
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
instNormedAddCommGroup
Real
Real.metricSpace
im
โ€”edist_nndist
nndist_of_re_eq
equiv_limAux ๐Ÿ“–mathematicalโ€”CauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
CauSeq.equiv
isAbsoluteValueNorm
CauSeq.const
limAux
โ€”Real.instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
isCauSeq_re
Real.instIsCompleteAbs
Nat.instAtLeastTwoHAddOfNat
isCauSeq_im
isAbsoluteValueNorm
lt_of_le_of_lt
norm_le_abs_re_add_abs_im
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
exists_forall_ge_and
CauSeq.equiv_lim
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
im_le_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLE
im
Norm.norm
Complex
instNorm
โ€”abs_le
Real.instIsOrderedAddMonoid
abs_im_le_norm
instIsComplete ๐Ÿ“–mathematicalโ€”CauSeq.IsComplete
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
โ€”Real.instIsStrictOrderedRing
isAbsoluteValueNorm
equiv_limAux
isAbsoluteValueNorm ๐Ÿ“–mathematicalโ€”IsAbsoluteValue
Real
Real.semiring
Real.partialOrder
Complex
instSemiring
Norm.norm
instNorm
โ€”norm_add_le
norm_mul
isCauSeq_conj ๐Ÿ“–mathematicalโ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
โ€”Real.instIsStrictOrderedRing
DistribMulActionSemiHomClass.toAddMonoidHomClass
instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
norm_conj
isCauSeq_im ๐Ÿ“–mathematicalโ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
im
Complex
instRing
Norm.norm
instNorm
โ€”Real.instIsStrictOrderedRing
LE.le.trans_lt
abs_im_le_norm
CauSeq.cauchy
isCauSeq_norm ๐Ÿ“–mathematicalIsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
Real.instRing
abs
Real.lattice
Real.instAddGroup
โ€”Real.instIsStrictOrderedRing
lt_of_le_of_lt
abs_norm_sub_norm_le
isCauSeq_re ๐Ÿ“–mathematicalโ€”IsCauSeq
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
re
Complex
instRing
Norm.norm
instNorm
โ€”Real.instIsStrictOrderedRing
lt_of_le_of_lt
abs_re_le_norm
CauSeq.cauchy
lim_conj ๐Ÿ“–mathematicalโ€”CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
instIsComplete
cauSeqConj
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
โ€”Real.instIsStrictOrderedRing
ext
isAbsoluteValueNorm
instIsComplete
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
isCauSeq_conj
isCauSeq_re
lim_re
isCauSeq_im
lim_im
CauSeq.lim_neg
lim_eq_lim_im_add_lim_re ๐Ÿ“–mathematicalโ€”CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
instIsComplete
instAdd
ofReal
Real.instRing
abs
Real.lattice
Real.instAddGroup
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
cauSeqRe
instMul
cauSeqIm
I
โ€”Real.instIsStrictOrderedRing
CauSeq.lim_eq_of_equiv_const
isAbsoluteValueNorm
instIsComplete
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
equiv_limAux
CauSeq.ext
ext
isCauSeq_re
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
isCauSeq_im
zero_add
lim_im ๐Ÿ“–mathematicalโ€”CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
cauSeqIm
im
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
instIsComplete
โ€”Real.instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
isAbsoluteValueNorm
instIsComplete
lim_eq_lim_im_add_lim_re
mul_one
MulZeroClass.mul_zero
add_zero
zero_add
lim_norm ๐Ÿ“–mathematicalโ€”CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
cauSeqNorm
Norm.norm
Complex
instNorm
instRing
isAbsoluteValueNorm
instIsComplete
โ€”Real.instIsStrictOrderedRing
CauSeq.lim_eq_of_equiv_const
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
isAbsoluteValueNorm
instIsComplete
CauSeq.equiv_lim
lt_of_le_of_lt
abs_norm_sub_norm_le
lim_re ๐Ÿ“–mathematicalโ€”CauSeq.lim
Real
Real.instField
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instRing
abs
Real.lattice
Real.instAddGroup
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
cauSeqRe
re
Complex
instRing
Norm.norm
instNorm
isAbsoluteValueNorm
instIsComplete
โ€”Real.instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
Real.instIsCompleteAbs
isAbsoluteValueNorm
instIsComplete
lim_eq_lim_im_add_lim_re
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
ne_zero_of_one_lt_re ๐Ÿ“–โ€”Real
Real.instLT
Real.instOne
re
โ€”โ€”ne_zero_of_re_pos
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
ne_zero_of_re_pos ๐Ÿ“–โ€”Real
Real.instLT
Real.instZero
re
โ€”โ€”LT.lt.false
zero_re
nndist_conj_self ๐Ÿ“–mathematicalโ€”NNDist.nndist
Complex
PseudoMetricSpace.toNNDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringNNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
MonoidWithZeroHom
Real
NonAssocSemiring.toMulZeroOneClass
Real.semiring
MonoidWithZeroHom.funLike
Real.nnabs
im
โ€”NNReal.eq
Nat.instAtLeastTwoHAddOfNat
dist_nndist
NNReal.coe_mul
NNReal.coe_two
Real.coe_nnabs
dist_conj_self
nndist_of_im_eq ๐Ÿ“–mathematicalimNNDist.nndist
Complex
PseudoMetricSpace.toNNDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real
Real.pseudoMetricSpace
re
โ€”NNReal.eq
dist_of_im_eq
nndist_of_re_eq ๐Ÿ“–mathematicalreNNDist.nndist
Complex
PseudoMetricSpace.toNNDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
Real
Real.pseudoMetricSpace
im
โ€”NNReal.eq
dist_of_re_eq
nndist_self_conj ๐Ÿ“–mathematicalโ€”NNDist.nndist
Complex
PseudoMetricSpace.toNNDist
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instSemiringNNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
MonoidWithZeroHom
Real
NonAssocSemiring.toMulZeroOneClass
Real.semiring
MonoidWithZeroHom.funLike
Real.nnabs
im
โ€”Nat.instAtLeastTwoHAddOfNat
nndist_comm
nndist_conj_self
nnnorm_I ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
I
NNReal
instOneNNReal
โ€”Real.instZeroLEOneClass
norm_I
norm_nonneg
nnnorm_natCast ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
instNatCast
NNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
โ€”norm_natCast
NNReal.coe_natCast
nnnorm_nnratCast ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
NNRat.cast
instNNRatCast
NNReal
NNReal.instNNRatCast
โ€”Real.instIsStrictOrderedRing
norm_nnratCast
norm_nonneg
nnnorm_ofNat ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
NNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
โ€”nnnorm_natCast
nnnorm_ratCast ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
instRatCast
Real
Real.normedAddCommGroup
Real.instRatCast
โ€”nnnorm_real
nnnorm_real ๐Ÿ“–mathematicalโ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
ofReal
Real
Real.normedAddCommGroup
โ€”NNReal.eq
norm_real
normSq_eq_norm_sq ๐Ÿ“–mathematicalโ€”DFunLike.coe
MonoidWithZeroHom
Complex
Real
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
Monoid.toNatPow
Real.instMonoid
Norm.norm
instNorm
โ€”sq
Real.mul_self_sqrt
normSq_nonneg
normSq_ofReal_add_I_mul_sqrt_one_sub ๐Ÿ“–mathematicalReal
Real.instLE
Norm.norm
Real.norm
Real.instOne
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
instAdd
ofReal
instMul
I
Real.sqrt
Real.instSub
Monoid.toNatPow
Real.instMonoid
โ€”mul_comm
normSq_add_mul_I
Real.sq_sqrt
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
abs_le
add_sub_cancel
normSq_ofReal_sub_I_mul_sqrt_one_sub ๐Ÿ“–mathematicalReal
Real.instLE
Norm.norm
Real.norm
Real.instOne
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
instSub
ofReal
instMul
I
Real.sqrt
Real.instSub
Monoid.toNatPow
Real.instMonoid
โ€”normSq_neg
neg_sub'
sub_neg_eq_add
ofReal_neg
Even.neg_pow
Nat.instAtLeastTwoHAddOfNat
normSq_ofReal_add_I_mul_sqrt_one_sub
norm_neg
norm_I ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
I
Real
Real.instOne
โ€”normSq_I
Real.sqrt_one
norm_add_mul_I ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instAdd
ofReal
instMul
I
Real.sqrt
Real
Real.instAdd
Monoid.toNatPow
Real.instMonoid
โ€”normSq_add_mul_I
norm_conj ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
โ€”normSq_conj
norm_def ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
Real.sqrt
DFunLike.coe
MonoidWithZeroHom
Real
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
โ€”โ€”
norm_div ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
DivInvMonoid.toDiv
instDivInvMonoid
Real
Real.instDivInvMonoid
โ€”norm_def
normSq_div
Real.sqrt_div
normSq_nonneg
norm_eq_sqrt_sq_add_sq ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
Real.sqrt
Real
Real.instAdd
Monoid.toNatPow
Real.instMonoid
re
im
โ€”norm_def
normSq_apply
sq
norm_intCast ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instIntCast
abs
Real
Real.lattice
Real.instAddGroup
Real.instIntCast
โ€”ofReal_intCast
norm_real
Real.norm_eq_abs
norm_int_of_nonneg ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instIntCast
Real
Real.instIntCast
โ€”norm_intCast
Int.cast_abs
Real.instIsStrictOrderedRing
abs_of_nonneg
Int.instAddLeftMono
norm_le_abs_re_add_abs_im ๐Ÿ“–mathematicalโ€”Real
Real.instLE
Norm.norm
Complex
instNorm
Real.instAdd
abs
Real.lattice
Real.instAddGroup
re
im
โ€”re_add_im
norm_real
norm_mul
norm_I
mul_one
norm_add_le
norm_le_sqrt_two_mul_max ๐Ÿ“–mathematicalโ€”Real
Real.instLE
Norm.norm
Complex
instNorm
Real.instMul
Real.sqrt
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMax
abs
Real.lattice
Real.instAddGroup
re
im
โ€”Nat.instAtLeastTwoHAddOfNat
le_max_of_le_left
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.sqrt_monotone
add_le_add
sq_le_sq
Real.instIsStrictOrderedRing
abs_of_nonneg
le_max_left
le_max_right
two_mul
Real.sqrt_mul
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_sq
norm_mul ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instMul
Real
Real.instMul
โ€”norm_def
normSq_mul
Real.sqrt_mul
normSq_nonneg
norm_mul_self_eq_normSq ๐Ÿ“–mathematicalโ€”Real
Real.instMul
Norm.norm
Complex
instNorm
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
โ€”Real.mul_self_sqrt
normSq_nonneg
norm_natCast ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instNatCast
Real
Real.instNatCast
โ€”norm_of_nonneg
Nat.cast_nonneg
Real.instIsOrderedRing
norm_nnratCast ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
NNRat.cast
instNNRatCast
Real
Real.instNNRatCast
โ€”norm_of_nonneg
NNRat.cast_nonneg
Real.instIsStrictOrderedRing
norm_ofNat ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
Real
instOfNatAtLeastTwo
Real.instNatCast
โ€”norm_natCast
norm_of_nonneg ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
Complex
instNorm
ofReal
โ€”norm_real
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
norm_pow ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Real
Real.instMonoid
โ€”map_pow
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
isAbsoluteValueNorm
Real.instIsDomain
instNontrivial
norm_prod ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
Finset.prod
CommRing.toCommMonoid
commRing
Real
Real.instCommMonoid
โ€”map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
isAbsoluteValueNorm
Real.instIsDomain
instNontrivial
norm_ratCast ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instRatCast
abs
Real
Real.lattice
Real.instAddGroup
Real.instRatCast
โ€”norm_real
norm_real ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
ofReal
Real
Real.norm
โ€”normSq_ofReal
Real.sqrt_mul_self_eq_abs
norm_sub_one_sq_eqOn_sphere ๐Ÿ“–mathematicalโ€”Set.EqOn
Complex
Real
Monoid.toNatPow
Real.instMonoid
Norm.norm
instNorm
instSub
instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Real.instOne
re
Metric.sphere
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
instZero
โ€”norm_sub_one_sq_eq_of_norm_eq_one
sub_zero
norm_sub_one_sq_eq_of_norm_eq_one ๐Ÿ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Monoid.toNatPow
Real.instMonoid
instSub
instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
re
โ€”sq_eq_one_iff
IsStrictOrderedRing.noZeroDivisors
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
sub_eq_zero_of_eq
normSq_apply
sq_norm
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
sub_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.instAtLeastTwo
norm_sub_one_sq_eq_of_norm_one ๐Ÿ“–mathematicalNorm.norm
Complex
instNorm
Real
Real.instOne
Monoid.toNatPow
Real.instMonoid
instSub
instOne
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
re
โ€”norm_sub_one_sq_eq_of_norm_eq_one
norm_two ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real
Real.instNatCast
โ€”norm_ofNat
Nat.instAtLeastTwoHAddOfNat
norm_zpow ๐Ÿ“–mathematicalโ€”Norm.norm
Complex
instNorm
DivInvMonoid.toZPow
instDivInvMonoid
Real
Real.instDivInvMonoid
โ€”map_zpowโ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
isAbsoluteValueNorm
Real.instIsDomain
instNontrivial
range_norm ๐Ÿ“–mathematicalโ€”Set.range
Real
Complex
Norm.norm
instNorm
Set.Ici
Real.instPreorder
Real.instZero
โ€”Set.Subset.antisymm
Set.range_subset_iff
norm_of_nonneg
range_normSq ๐Ÿ“–mathematicalโ€”Set.range
Real
Complex
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
Set.Ici
Real.instPreorder
Real.instZero
โ€”Set.Subset.antisymm
Set.range_subset_iff
normSq_nonneg
normSq_ofReal
Real.mul_self_sqrt
re_le_norm ๐Ÿ“–mathematicalโ€”Real
Real.instLE
re
Norm.norm
Complex
instNorm
โ€”abs_le
Real.instIsOrderedAddMonoid
abs_re_le_norm
re_neg_ne_zero_of_one_lt_re ๐Ÿ“–โ€”Real
Real.instLT
Real.instOne
re
โ€”โ€”re_neg_ne_zero_of_re_pos
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
re_neg_ne_zero_of_re_pos ๐Ÿ“–โ€”Real
Real.instLT
Real.instZero
re
โ€”โ€”ne_iff_lt_or_gt
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
neg_re
sq_norm ๐Ÿ“–mathematicalโ€”Real
Monoid.toNatPow
Real.instMonoid
Norm.norm
Complex
instNorm
DFunLike.coe
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
instSemiring
Real.semiring
MonoidWithZeroHom.funLike
normSq
โ€”normSq_eq_norm_sq
sq_norm_sub_sq_im ๐Ÿ“–mathematicalโ€”Real
Real.instSub
Monoid.toNatPow
Real.instMonoid
Norm.norm
Complex
instNorm
im
re
โ€”sq_norm_sub_sq_re
sub_sub_cancel
sq_norm_sub_sq_re ๐Ÿ“–mathematicalโ€”Real
Real.instSub
Monoid.toNatPow
Real.instMonoid
Norm.norm
Complex
instNorm
re
im
โ€”sq_norm
normSq_apply
sq
add_sub_cancel_left

---

โ† Back to Index