Documentation Verification Report

OpenMapping

πŸ“ Source: Mathlib/Analysis/Complex/OpenMapping.lean

Statistics

MetricCount
Definitions0
Theoremseventually_constant_or_nhds_le_map_nhds, eventually_constant_or_nhds_le_map_nhds_aux, eq_const_add_im_mul_I_of_re_eq_const, eq_const_of_im_eq_const, eq_const_of_re_eq_const, eq_re_add_const_mul_I_of_re_eq_const, is_constant_or_isOpen, is_constant_or_isOpenMap, isOpenQuotientMap_pow, isOpenQuotientMap_pow_compl_zero, isOpenQuotientMap_zpow_compl_zero, ball_subset_image_closedBall, C_eq_or_isOpenQuotientMap_eval, isOpenQuotientMap_eval
14
Total14

AnalyticAt

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_constant_or_nhds_le_map_nhds πŸ“–mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Filter.Eventually
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.map
β€”Metric.isOpen_iff
isOpen_analyticAt
Complex.instCompleteSpace
comp
dist_self_add_left
norm_smul
NormedSpace.toNormSMulClass
mem_sphere_zero_iff_norm
mul_one
dist_zero_right
add
analyticAt_const
ContinuousLinearMap.analyticAt
IsScalarTower.left
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Filter.eventually_of_mem
Metric.ball_mem_nhds
eq_or_ne
Convex.isPreconnected
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
convex_ball
sub_zero
norm_inv
norm_norm
inv_mul_cancelβ‚€
AnalyticOnNhd.eqOn_of_preconnected_of_eventuallyEq
analyticOnNhd_const
Metric.mem_ball_self
zero_smul
add_zero
dist_eq_norm
Metric.mem_ball
Complex.norm_real
smul_smul
mul_inv_cancelβ‚€
one_smul
add_sub_cancel
eventually_constant_or_nhds_le_map_nhds_aux
LE.le.trans
Filter.map_compose
Filter.map_mono
Continuous.fun_add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_const
Continuous.smul
continuous_id'
Continuous.tendsto
eventually_constant_or_nhds_le_map_nhds_aux πŸ“–mathematicalAnalyticAt
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Filter.Eventually
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.map
β€”Filter.HasBasis.le_basis_iff
Metric.nhds_basis_ball
Filter.HasBasis.map
Metric.nhds_basis_closedBall
eventually_eq_or_eventually_ne
analyticAt_const
IsOpen.eventually_mem
isOpen_analyticAt
Complex.instCompleteSpace
Filter.HasBasis.mem_iff
Filter.Eventually.and
eventually_nhdsWithin_iff
DifferentiableOn.mono
AnalyticOnNhd.differentiableOn
Metric.ball_subset_closedBall
AnalyticOnNhd.continuousOn
closure_ball
LT.lt.ne
GT.gt.lt
lt_inf_iff
Metric.closedBall_subset_closedBall
inf_le_left
DiffContOnCl.mono
Metric.ball_subset_ball
Metric.sphere_subset_closedBall
Metric.ne_of_mem_sphere
NormedSpace.sphere_nonempty
EMetric.instNontrivialTopologyOfNontrivial
Complex.instNontrivial
LT.lt.le
Continuous.comp_continuousOn
continuous_norm
ContinuousOn.mono
DiffContOnCl.continuousOn_ball
DiffContOnCl.sub_const
IsCompact.exists_isMinOn
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isCompact_sphere
Complex.instProperSpace
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_sub_pos_iff
HasSubset.Subset.trans
Set.instIsTransSubset
DiffContOnCl.ball_subset_image_closedBall
Filter.not_eventually
Set.image_mono
inf_le_right

AnalyticOnNhd

Theorems

NameKindAssumesProvesValidatesDepends On
eq_const_add_im_mul_I_of_re_eq_const πŸ“–mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.im
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsConnected
Complex.instAdd
Complex.ofReal
Complex.instMul
Complex.I
β€”eq_const_of_im_eq_const
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
zero_add
eq_const_of_im_eq_const πŸ“–β€”AnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.im
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsConnected
β€”β€”IsConnected.nonempty
eq_const_of_re_eq_const πŸ“–β€”AnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.re
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsConnected
β€”β€”IsConnected.nonempty
eq_re_add_const_mul_I_of_re_eq_const πŸ“–mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Complex.re
IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
IsConnected
Complex.instAdd
Complex.ofReal
Complex.instMul
Complex.I
β€”eq_const_of_re_eq_const
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
zero_add
is_constant_or_isOpen πŸ“–mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
IsOpen
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Set.image
β€”eqOn_of_preconnected_of_eventuallyEq
analyticOnNhd_const
isOpen_iff_mem_nhds
AnalyticAt.eventually_constant_or_nhds_le_map_nhds
Filter.image_mem_map
IsOpen.mem_nhds
is_constant_or_isOpenMap πŸ“–mathematicalAnalyticOnNhd
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Set.univ
IsOpenMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
β€”Set.subset_univ
is_constant_or_isOpen
PreconnectedSpace.isPreconnected_univ
ConnectedSpace.toPreconnectedSpace
PathConnectedSpace.connectedSpace
NormedSpace.instPathConnectedSpace

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
isOpenQuotientMap_pow πŸ“–mathematicalβ€”IsOpenQuotientMap
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Polynomial.eval_pow
Polynomial.eval_X
Polynomial.isOpenQuotientMap_eval
Polynomial.natDegree_pow
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Polynomial.natDegree_X
instNontrivial
mul_one
isOpenQuotientMap_pow_compl_zero πŸ“–mathematicalβ€”IsOpenQuotientMap
Complex
instZero
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedCommRing.toNormedRing
NormedDivisionRing.toNormMulClass
NormedField.toNormedDivisionRing
β€”pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsOpenQuotientMap.surjective
isOpenQuotientMap_pow
zero_pow
Continuous.comp'
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
continuous_subtype_val
Topology.IsOpenEmbedding.isOpenMap_iff
IsOpen.isOpenEmbedding_subtypeVal
IsClosed.isOpen_compl
isClosed_singleton
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
IsOpenMap.comp
IsOpenQuotientMap.isOpenMap
IsOpen.isOpenMap_subtype_val
isOpenQuotientMap_zpow_compl_zero πŸ“–mathematicalβ€”IsOpenQuotientMap
Complex
instZero
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DivInvMonoid.toZPow
instDivInvMonoid
zpow_ne_zero
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
Field.toSemifield
instField
β€”zpow_ne_zero
Nat.cast_ne_zero
Int.instCharZero
isOpenQuotientMap_pow_compl_zero
neg_ne_zero
pow_ne_zero
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
zpow_neg
zpow_natCast
inv_pow
IsOpenQuotientMap.comp
Homeomorph.isOpenQuotientMap

DiffContOnCl

Theorems

NameKindAssumesProvesValidatesDepends On
ball_subset_image_closedBall πŸ“–mathematicalDiffContOnCl
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
Metric.ball
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
Complex.instNorm
Complex.instSub
Filter.Frequently
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instHasSubset
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set.image
Metric.closedBall
β€”Nat.instAtLeastTwoHAddOfNat
sub_const
Continuous.comp_continuousOn
continuous_norm
continuousOn
closure_ball
LT.lt.ne
DifferentiableOn.analyticOnNhd
Complex.instCompleteSpace
differentiableOn
Metric.isOpen_ball
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Metric.mem_ball
norm_sub_sub_norm_sub_le_norm_sub
dist_comm
Metric.exists_isLocalMin_mem_ball
Complex.instProperSpace
instOrderTopologyReal
Metric.mem_closedBall_self
LT.lt.le
LT.lt.trans_le
Metric.ball_subset_closedBall
sub_eq_zero
DifferentiableOn.eventually_differentiableAt
IsOpen.mem_nhds
Complex.eventually_eq_or_eq_zero_of_isLocalMin_norm
Filter.mp_mem
Filter.univ_mem'
Filter.Eventually.frequently
PerfectSpace.not_isolated
instPerfectSpace
Filter.Eventually.filter_mono
nhdsWithin_le_nhds
Convex.isPreconnected
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_ball
AnalyticOnNhd.eqOn_of_preconnected_of_frequently_eq
analyticOnNhd_const
Metric.mem_ball_self
Filter.not_eventually
Filter.mem_of_superset
Metric.ball_mem_nhds

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
C_eq_or_isOpenQuotientMap_eval πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Complex
Polynomial
Complex.instSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
IsOpenQuotientMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
eval
β€”AnalyticOnNhd.is_constant_or_isOpenMap
AnalyticOnNhd.eval_polynomial
funext
instIsDomain
IsAlgClosed.instInfinite
Complex.isAlgClosed
eval_C
IsAlgClosed.eval_surjective
Iff.not
natDegree_eq_zero
continuous_aeval
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
isOpenQuotientMap_eval πŸ“–mathematicalβ€”IsOpenQuotientMap
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
eval
Complex.instSemiring
β€”C_eq_or_isOpenQuotientMap_eval
Iff.not
natDegree_eq_zero

---

← Back to Index