Documentation Verification Report

Order

📁 Source: Mathlib/Analysis/Complex/Order.lean

Statistics

MetricCount
DefinitionspartialOrder, evalComplexOfReal
2
Theoremseq_re_of_ofReal_le, le_def, lt_def, monotone_ofReal, neg_iff, neg_re_eq_norm, nonneg_iff, nonpos_iff, not_le_iff, not_le_zero_iff, not_lt_iff, not_lt_zero_iff, pos_iff, re_eq_neg_norm, re_eq_norm, real_le_real, real_lt_real, sq_nonneg_iff, sq_nonpos_iff, zero_le_real, zero_lt_real, ofReal_ne_zero_of_ne_zero, ofReal_nonneg, ofReal_pos
24
Total26

Complex

Definitions

NameCategoryTheorems
partialOrder 📖CompOp
38 mathmath: not_le_iff, DirichletCharacter.zetaMul_prime_pow_nonneg, PositiveLinearMap.preGNS_norm_def, PositiveLinearMap.preGNS_inner_def, CStarAlgebra.instNonnegSpectrumClassComplexNonUnital, Mathlib.Meta.Positivity.ofReal_nonneg, DirichletCharacter.zetaMul_nonneg, arg_eq_zero_iff_zero_le, sq_nonneg_iff, neg_iff, nonpos_iff, inv_natCast_cpow_ofReal_pos, Mathlib.Meta.Positivity.ofReal_pos, zero_lt_real, riemannZeta_pos_of_one_lt, not_le_zero_iff, pos_iff, re_eq_neg_norm, zero_le_real, sq_nonpos_iff, compl_Iic_zero, not_lt_zero_iff, RCLike.to_complex_nonneg_iff, real_le_real, nonneg_iff, real_lt_real, le_def, monotone_ofReal, CStarAlgebra.instNonnegSpectrumClassComplexUnital, re_eq_norm, neg_re_eq_norm, re_nonneg_iff_nonneg, mem_slitPlane_iff_not_le_zero, PositiveLinearMap.preGNS_norm_sq, orderClosedTopology, not_lt_iff, arg_eq_pi_iff_lt_zero, lt_def

Theorems

NameKindAssumesProvesValidatesDepends On
eq_re_of_ofReal_le 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
ofReal
reconj_eq_iff_re
conj_eq_iff_im
le_def
ofReal_im
le_def 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Real
Real.instLE
re
im
lt_def 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Real
Real.instLT
re
im
monotone_ofReal 📖mathematicalMonotone
Real
Complex
Real.instPreorder
PartialOrder.toPreorder
partialOrder
ofReal
neg_iff 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLT
re
Real.instZero
im
lt_def
neg_re_eq_norm 📖mathematicalReal
Real.instNeg
re
Norm.norm
Complex
instNorm
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
neg_re
norm_neg
re_eq_norm
Iff.and
neg_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
neg_eq_zero
nonneg_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLE
Real.instZero
re
im
le_def
nonpos_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLE
re
Real.instZero
im
le_def
not_le_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Real
Real.instLT
re
le_def
not_and_or
not_le
not_le_zero_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLT
Real.instZero
re
not_le_iff
not_lt_iff 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
Real
Real.instLE
re
lt_def
not_and_or
not_lt
not_lt_zero_iff 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLE
Real.instZero
re
not_lt_iff
pos_iff 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
Real
Real.instLT
Real.instZero
re
im
lt_def
re_eq_neg_norm 📖mathematicalre
Real
Real.instNeg
Norm.norm
Complex
instNorm
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
neg_eq_iff_eq_neg
neg_re_eq_norm
re_eq_norm 📖mathematicalre
Norm.norm
Complex
instNorm
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
norm_nonneg
abs_re_eq_norm
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
real_le_real 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
ofReal
Real
Real.instLE
real_lt_real 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
ofReal
Real
Real.instLT
sq_nonneg_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
im
Real
Real.instZero
nonneg_iff
pow_two
mul_re
mul_im
mul_comm
Nat.instAtLeastTwoHAddOfNat
mul_two
mul_eq_zero_iff_right
IsStrictOrderedRing.noZeroDivisors
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
mul_eq_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_pow
Nat.instCharZero
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
sub_zero
sq_nonneg
sq_nonpos_iff 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instZero
re
Real
Real.instZero
nonpos_iff
pow_two
mul_re
mul_im
mul_comm
Nat.instAtLeastTwoHAddOfNat
mul_two
mul_eq_zero_iff_right
IsStrictOrderedRing.noZeroDivisors
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
mul_eq_zero
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
zero_pow
Nat.instCharZero
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
zero_sub
sq_nonneg
zero_le_real 📖mathematicalComplex
Preorder.toLE
PartialOrder.toPreorder
partialOrder
instZero
ofReal
Real
Real.instLE
Real.instZero
real_le_real
zero_lt_real 📖mathematicalComplex
Preorder.toLT
PartialOrder.toPreorder
partialOrder
instZero
ofReal
Real
Real.instLT
Real.instZero
real_lt_real

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalComplexOfReal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ofReal_ne_zero_of_ne_zero 📖Complex.ofReal_ne_zero
ofReal_nonneg 📖mathematicalReal
Real.instLE
Real.instZero
Complex
Preorder.toLE
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
Complex.ofReal
Complex.zero_le_real
ofReal_pos 📖mathematicalReal
Real.instLT
Real.instZero
Complex
Preorder.toLT
PartialOrder.toPreorder
Complex.partialOrder
Complex.instZero
Complex.ofReal
Complex.zero_lt_real

---

← Back to Index