Documentation Verification Report

Periodic

πŸ“ Source: Mathlib/Analysis/Complex/Periodic.lean

Statistics

MetricCount
DefinitionscuspFunction, invQParam, qParam
3
TheoremsboundedAtFilter_cuspFunction, contDiff_qParam, continuous_qParam, cuspFunction_add, cuspFunction_eq_of_nonzero, cuspFunction_neg, cuspFunction_smul, cuspFunction_sub, cuspFunction_zero_eq_limUnder_nhds_ne, cuspFunction_zero_of_zero_at_inf, differentiableAt_cuspFunction, differentiableAt_cuspFunction_zero, differentiable_qParam, eq_cuspFunction, eventually_differentiableAt_cuspFunction_nhds_ne_zero, exp_decay_of_zero_at_inf, exp_decay_sub_of_bounded_at_inf, im_invQParam, invQParam_tendsto, norm_qParam, norm_qParam_lt_iff, qParam_left_inv_mod_period, qParam_ne_zero, qParam_right_inv, qParam_tendsto, tendsto_at_I_inf, tendsto_nhds_zero
27
Total30

Function.Periodic

Definitions

NameCategoryTheorems
cuspFunction πŸ“–CompOp
10 mathmath: cuspFunction_zero_eq_limUnder_nhds_ne, differentiableAt_cuspFunction, boundedAtFilter_cuspFunction, cuspFunction_zero_of_zero_at_inf, eq_cuspFunction, cuspFunction_eq_of_nonzero, eventually_differentiableAt_cuspFunction_nhds_ne_zero, tendsto_at_I_inf, differentiableAt_cuspFunction_zero, exp_decay_sub_of_bounded_at_inf
invQParam πŸ“–CompOp
7 mathmath: tendsto_nhds_zero, im_invQParam, qParam_right_inv, cuspFunction_eq_of_nonzero, invQParam_tendsto, im_invQParam_pos_of_norm_lt_one, qParam_left_inv_mod_period
qParam πŸ“–CompOp
17 mathmath: norm_qParam_le_of_one_half_le_im, norm_qParam_lt_iff, SlashInvariantFormClass.eq_cuspFunction, differentiableAt_cuspFunction, continuous_qParam, UpperHalfPlane.norm_qParam_lt_one, qParam_right_inv, UpperHalfPlane.qParam_tendsto_atImInfty, eq_cuspFunction, qParam_tendsto, norm_qParam, qParam_left_inv_mod_period, differentiable_qParam, contDiff_qParam, ModularForm.logDeriv_qParam, ModularFormClass.hasSum_qExpansion, ModularFormClass.qExpansion_coeff_eq_intervalIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
boundedAtFilter_cuspFunction πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.BoundedAtFilter
Complex
Complex.instNorm
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
cuspFunction
β€”Asymptotics.IsBigO.congr'
Asymptotics.IsBigO.comp_tendsto
invQParam_tendsto
eventually_nhdsWithin_of_forall
cuspFunction_eq_of_nonzero
contDiff_qParam πŸ“–mathematicalβ€”ContDiff
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.instNormedAddCommGroup
InnerProductSpace.toNormedSpace
Complex.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.innerProductSpace
qParam
β€”ContDiff.cexp
ContDiff.div_const
ContDiff.mul
contDiff_const
contDiff_fun_id
continuous_qParam πŸ“–mathematicalβ€”Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
qParam
β€”Continuous.cexp
Continuous.comp'
Continuous.div_const
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_id'
Continuous.fun_mul
continuous_const
cuspFunction_add πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
Complex.instZero
Pi.instAdd
Complex.instAdd
β€”ne_or_eq
Function.update_of_ne
Function.update_self
Filter.Tendsto.limUnder_eq
Complex.instT2Space
tendsto_nhds_zero
PerfectSpace.not_isolated
instPerfectSpace
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
tendsto_nhds_limUnder
cuspFunction_eq_of_nonzero πŸ“–mathematicalβ€”cuspFunction
invQParam
β€”Function.update_of_ne
cuspFunction_neg πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
Complex.instZero
Pi.instNeg
Complex.instNeg
β€”neg_smul
one_smul
cuspFunction_smul
cuspFunction_smul πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
Complex.instZero
Function.hasSMul
Algebra.toSMul
Complex.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”eq_or_ne
Function.update_self
Filter.Tendsto.limUnder_eq
Complex.instT2Space
PerfectSpace.not_isolated
instPerfectSpace
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Function.update_of_ne
cuspFunction_sub πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
Complex.instZero
Pi.instSub
Complex.instSub
β€”sub_eq_add_neg
cuspFunction_neg
cuspFunction_add
IsTopologicalRing.toContinuousNeg
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
cuspFunction_zero_eq_limUnder_nhds_ne πŸ“–mathematicalβ€”cuspFunction
Complex
Complex.instZero
limUnder
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instInhabited
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Function.update_self
Filter.map_congr
eventuallyEq_nhdsWithin_of_eqOn
cuspFunction.eq_1
Function.update_of_ne
cuspFunction_zero_of_zero_at_inf πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.ZeroAtFilter
Complex
Complex.instZero
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
cuspFunctionβ€”Function.update_self
Filter.Tendsto.limUnder_eq
Complex.instT2Space
PerfectSpace.not_isolated
instPerfectSpace
Filter.Tendsto.comp
invQParam_tendsto
differentiableAt_cuspFunction πŸ“–mathematicalFunction.Periodic
Complex
Complex.instAdd
Complex.ofReal
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
qParam
β€”IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Nat.instAtLeastTwoHAddOfNat
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasStrictDerivAt.congr_simp
mul_one
HasStrictDerivAt.cexp
HasStrictDerivAt.div_const
HasStrictDerivAt.const_mul
hasStrictDerivAt_id
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Complex.exp_ne_zero
div_ne_zero
Complex.two_pi_I_ne_zero
Nat.cast_zero
Complex.instCompleteSpace
HasStrictFDerivAt.differentiableAt
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
HasStrictDerivAt.to_localInverse
HasStrictFDerivAt.eventually_right_inverse
RingHomInvPair.ids
HasStrictDerivAt.hasStrictFDerivAt_equiv
Filter.EventuallyEq.fun_comp
eq_cuspFunction
DifferentiableAt.congr_of_eventuallyEq
DifferentiableAt.comp
Filter.EventuallyEq.eq_of_nhds
HasStrictFDerivAt.eventually_left_inverse
Filter.EventuallyEq.symm
differentiableAt_cuspFunction_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Function.Periodic
Complex
Complex.instAdd
Complex.ofReal
Filter.Eventually
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
Filter.BoundedAtFilter
Complex.instNorm
cuspFunction
Complex.instZero
β€”Asymptotics.IsBigO.bound
boundedAtFilter_cuspFunction
Filter.Eventually.and
eventually_differentiableAt_cuspFunction_nhds_ne_zero
eventually_nhds_iff
eventually_nhdsWithin_iff
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
mul_one
DifferentiableAt.differentiableWithinAt
AddTorsor.nonempty
Complex.differentiableOn_update_limUnder_of_bddAbove
Complex.instCompleteSpace
IsOpen.mem_nhds
DifferentiableOn.differentiableAt
Function.update_eq_self
cuspFunction_zero_eq_limUnder_nhds_ne
differentiable_qParam πŸ“–mathematicalβ€”Differentiable
Complex
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
qParam
β€”Differentiable.cexp
Differentiable.div_const
Differentiable.const_mul
differentiable_id
eq_cuspFunction πŸ“–mathematicalFunction.Periodic
Complex
Complex.instAdd
Complex.ofReal
cuspFunction
qParam
β€”cuspFunction.eq_1
Function.update_of_ne
Complex.exp_ne_zero
qParam_left_inv_mod_period
int_mul
eventually_differentiableAt_cuspFunction_nhds_ne_zero πŸ“–mathematicalReal
Real.instLT
Real.instZero
Function.Periodic
Complex
Complex.instAdd
Complex.ofReal
Filter.Eventually
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
cuspFunction
nhdsWithin
Complex.instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”Filter.Eventually.mp
Filter.Tendsto.eventually
invQParam_tendsto
eventually_nhdsWithin_of_forall
qParam_right_inv
LT.lt.ne'
differentiableAt_cuspFunction
exp_decay_of_zero_at_inf πŸ“–mathematicalReal
Real.instLT
Real.instZero
Function.Periodic
Complex
Complex.instAdd
Complex.ofReal
Filter.Eventually
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
Filter.ZeroAtFilter
Complex.instZero
Asymptotics.IsBigO
Complex.instNorm
Real.norm
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
neg_mul
cuspFunction_zero_of_zero_at_inf
sub_zero
exp_decay_sub_of_bounded_at_inf
Filter.ZeroAtFilter.boundedAtFilter
exp_decay_sub_of_bounded_at_inf πŸ“–mathematicalReal
Real.instLT
Real.instZero
Function.Periodic
Complex
Complex.instAdd
Complex.ofReal
Filter.Eventually
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
Filter.BoundedAtFilter
Complex.instNorm
Asymptotics.IsBigO
Real.norm
Complex.instSub
cuspFunction
Complex.instZero
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
β€”Nat.instAtLeastTwoHAddOfNat
neg_mul
eq_cuspFunction
LT.lt.ne'
sub_zero
norm_qParam
Asymptotics.IsBigO.norm_right
Asymptotics.IsBigO.comp_tendsto
Asymptotics.IsBigO.mono
DifferentiableAt.isBigO_sub
differentiableAt_cuspFunction_zero
nhdsWithin_le_nhds
qParam_tendsto
im_invQParam πŸ“–mathematicalβ€”Complex.im
invQParam
Real
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Real.log
Norm.norm
Complex
Complex.instNorm
β€”Nat.instAtLeastTwoHAddOfNat
Complex.div_I
neg_mul
Complex.div_ofReal_re
Complex.div_ofNat_re
MulZeroClass.mul_zero
Complex.div_ofReal_im
Complex.div_ofNat_im
zero_div
mul_one
sub_self
MulZeroClass.zero_mul
add_zero
Complex.log_re
zero_add
neg_div
invQParam_tendsto πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Complex
invQParam
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
im_invQParam
Filter.Tendsto.const_mul_atBot_of_neg
Real.instIsStrictOrderedRing
div_neg_of_neg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
Filter.Tendsto.comp
Real.tendsto_log_nhdsGT_zero
tendsto_norm_nhdsNE_zero
norm_qParam πŸ“–mathematicalβ€”Norm.norm
Complex
Complex.instNorm
qParam
Real.exp
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Complex.im
β€”Nat.instAtLeastTwoHAddOfNat
Complex.norm_exp
Complex.div_ofReal_re
MulZeroClass.mul_zero
sub_zero
MulZeroClass.zero_mul
add_zero
mul_one
sub_self
zero_sub
neg_mul
norm_qParam_lt_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Complex
Complex.instNorm
qParam
Real.exp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instMul
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.pi
Complex.im
β€”Nat.instAtLeastTwoHAddOfNat
norm_qParam
Real.exp_lt_exp
div_lt_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
mul_lt_mul_left_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
Real.pi_pos
qParam_left_inv_mod_period πŸ“–mathematicalβ€”invQParam
qParam
Complex
Complex.instAdd
Complex.instMul
Complex.instIntCast
Complex.ofReal
β€”Nat.instAtLeastTwoHAddOfNat
Complex.log_exp_exists
mul_div_assoc
mul_comm
mul_add
Distrib.leftDistribClass
mul_assoc
div_mul_cancelβ‚€
Complex.two_pi_I_ne_zero
mul_div_cancelβ‚€
Nat.cast_zero
qParam_ne_zero πŸ“–β€”β€”β€”β€”β€”
qParam_right_inv πŸ“–mathematicalβ€”qParam
invQParam
β€”mul_div_cancelβ‚€
Nat.instAtLeastTwoHAddOfNat
Complex.two_pi_I_ne_zero
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
Complex.ofReal_ne_zero
Complex.exp_log
qParam_tendsto πŸ“–mathematicalReal
Real.instLT
Real.instZero
Filter.Tendsto
Complex
qParam
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Complex.instZero
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
tendsto_zero_iff_norm_tendsto_zero
Nat.instAtLeastTwoHAddOfNat
norm_qParam
Filter.tendsto_comap'_iff
Filter.univ_mem
Complex.range_im
Filter.Tendsto.comp
Real.tendsto_exp_atBot
Filter.Tendsto.atBot_div_const
Real.instIsStrictOrderedRing
Filter.Tendsto.const_mul_atTop_of_neg
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsStrictOrderedRing.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
Real.pi_pos
Filter.tendsto_id
Filter.Eventually.of_forall
Complex.exp_ne_zero
tendsto_at_I_inf πŸ“–mathematicalReal
Real.instLT
Real.instZero
Function.Periodic
Complex
Complex.instAdd
Complex.ofReal
Filter.Eventually
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Complex.instDenselyNormedField
Complex.addCommGroup
Complex.instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Filter.comap
Complex.im
Filter.atTop
Real.instPreorder
Filter.BoundedAtFilter
Complex.instNorm
Filter.Tendsto
nhds
cuspFunction
Complex.instZero
β€”tendsto_nhdsWithin_of_tendsto_nhds
ContinuousAt.tendsto
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
differentiableAt_cuspFunction_zero
eq_cuspFunction
LT.lt.ne'
Filter.Tendsto.comp
qParam_tendsto
tendsto_nhds_zero πŸ“–mathematicalContinuousAt
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
cuspFunction
Complex.instZero
Filter.Tendsto
invQParam
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
nhds
β€”Filter.Tendsto.congr'
tendsto_nhdsWithin_of_tendsto_nhds
ContinuousAt.tendsto
Filter.mp_mem
self_mem_nhdsWithin
Filter.univ_mem'
cuspFunction_eq_of_nonzero

---

← Back to Index