Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Complex/Polynomial/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsexists_root, isAlgClosed, degree_le_two, natDegree_le_two, card_complex_roots_eq_card_real_add_card_not_gal_inv, galActionHom_bijective_of_prime_degree, galActionHom_bijective_of_prime_degree', splits_β„š_β„‚, mul_star_dvd_of_aeval_eq_zero_im_ne_zero, quadratic_dvd_of_aeval_eq_zero_im_ne_zero, nonempty_algEquiv_or
11
Total11

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
exists_root πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
Complex
instSemiring
Polynomial.IsRootβ€”Differentiable.apply_eq_of_tendsto_cocompact
instNontrivial
Differentiable.inv
Polynomial.differentiable
Filter.Tendsto.comp
Filter.tendsto_invβ‚€_cobounded
Polynomial.tendsto_norm_atTop
isAbsoluteValueNorm
tendsto_norm_cobounded_atTop
Metric.cobounded_eq_cocompact
instProperSpace
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.funext
instIsDomain
CharZero.infinite
instCharZero
inv_injective
Polynomial.eval_zero
inv_zero
isAlgClosed πŸ“–mathematicalβ€”IsAlgClosed
Complex
instField
β€”IsAlgClosed.of_exists_root
exists_root
Polynomial.degree_pos_of_irreducible

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
degree_le_two πŸ“–mathematicalIrreducible
Polynomial
Real
Real.semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
β€”Polynomial.natDegree_le_iff_degree_le
natDegree_le_two
natDegree_le_two πŸ“–mathematicalIrreducible
Polynomial
Real
Real.semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natDegreeβ€”IsAlgClosed.exists_aeval_eq_zero
Complex.isAlgClosed
instFaithfulSMul_1
DivisionRing.isSimpleRing
Complex.instNontrivial
LT.lt.ne'
Polynomial.degree_pos_of_irreducible
Complex.finrank_real_complex
minpoly.eq_of_irreducible
Polynomial.natDegree_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ne_zero
Polynomial.nontrivial
Real.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.natDegree_C
add_zero
minpoly.natDegree_le
Complex.instFiniteDimensionalReal

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
mul_star_dvd_of_aeval_eq_zero_im_ne_zero πŸ“–mathematicalDFunLike.coe
AlgHom
Real
Polynomial
CommSemiring.toSemiring
Real.instCommSemiring
Complex
semiring
Complex.instSemiring
algebraOfAlgebra
Algebra.id
NormedAlgebra.toAlgebra
Real.normedField
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
RCLike.toNormedAlgebra
Complex.instRCLike
AlgHom.funLike
aeval
Complex.instZero
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Complex.commRing
instMul
instSub
Complex.instRing
X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
map
algebraMap
β€”IsCoprime.mul_dvd
isCoprime_X_sub_C_of_isUnit_sub
sub_ne_zero
Complex.conj_eq_iff_im
eval_map_algebraMap
aeval_conj
Complex.instNontrivial
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
quadratic_dvd_of_aeval_eq_zero_im_ne_zero πŸ“–mathematicalDFunLike.coe
AlgHom
Real
Polynomial
CommSemiring.toSemiring
Real.instCommSemiring
Complex
semiring
Complex.instSemiring
algebraOfAlgebra
Algebra.id
NormedAlgebra.toAlgebra
Real.normedField
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
RCLike.toNormedAlgebra
Complex.instRCLike
AlgHom.funLike
aeval
Complex.instZero
Real.semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Real.commRing
instAdd
instSub
Real.instRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
instMul
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.re
Real.instMonoid
Norm.norm
Complex.instNorm
β€”Nat.instAtLeastTwoHAddOfNat
map_dvd_map'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
map_add
map_sub
map_pow
map_X
map_mul
map_C
Complex.ofReal_mul
Complex.add_conj
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
Complex.mul_conj'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
mul_star_dvd_of_aeval_eq_zero_im_ne_zero

Polynomial.Gal

Theorems

NameKindAssumesProvesValidatesDepends On
card_complex_roots_eq_card_real_add_card_not_gal_inv πŸ“–mathematicalβ€”Finset.card
Complex
Set.toFinset
Polynomial.rootSet
Rat.commRing
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
DivisionRing.toRatAlgebra
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instCharZero
Polynomial.rootSetFintype
Real
Real.commRing
Real.instIsDomain
Real.instDivisionRing
RCLike.charZero_rclike
Real.instRCLike
Set.Elem
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Rat.instField
Equiv.Perm.support
Set
Set.instMembership
Complex.instDecidableEq
DFunLike.coe
MonoidHom
Polynomial.Gal
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Polynomial.instGroupGal
Equiv.Perm.permGroup
MonoidHom.instFunLike
galActionHom
splits_β„š_β„‚
AlgEquiv
Semifield.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
restrict
AlgEquiv.restrictScalars
Rat.commSemiring
Real.instCommSemiring
Algebra.complexToReal
Complex.instSemiring
Algebra.id
Complex.instCommSemiring
IsScalarTower.rat
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Complex.addCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedCommRing
InnerProductSpace.toNormedSpace
instInnerProductSpaceRealComplex
Rat.instNormedField
NormedAlgebra.toNormedSpace
normedAlgebraRat
RCLike.toNormedAlgebra
Complex.instRCLike
Complex.conjAe
β€”instIsDomain
Complex.instCharZero
Real.instIsDomain
RCLike.charZero_rclike
splits_β„š_β„‚
IsScalarTower.rat
Finset.eq_empty_of_isEmpty
Polynomial.rootSet_zero
Set.instIsEmptyElemEmptyCollection
Set.toFinset_congr
Set.toFinset_empty
RingHom.injective
DivisionRing.isSimpleRing
Complex.instNontrivial
Finset.card_image_of_injective
Subtype.coe_injective
Set.mem_toFinset
Polynomial.mem_rootSet_of_ne
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Complex.ext
galActionHom_restrict
Complex.conj_eq_iff_im
Polynomial.mem_rootSet
Equiv.Perm.mem_support
Finset.card_union_of_disjoint
Finset.disjoint_left
galActionHom_bijective_of_prime_degree πŸ“–mathematicalIrreducible
Polynomial
Rat.semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Nat.Prime
Polynomial.natDegree
Fintype.card
Set.Elem
Complex
Polynomial.rootSet
Rat.commRing
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
DivisionRing.toRatAlgebra
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instCharZero
Polynomial.rootSetFintype
Real
Real.commRing
Real.instIsDomain
Real.instDivisionRing
RCLike.charZero_rclike
Real.instRCLike
Function.Bijective
Polynomial.Gal
Rat.instField
Equiv.Perm
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Polynomial.instGroupGal
Equiv.Perm.permGroup
MonoidHom.instFunLike
galActionHom
splits_β„š_β„‚
β€”instIsDomain
Complex.instCharZero
Real.instIsDomain
RCLike.charZero_rclike
Fintype.card_congr'
Polynomial.rootSet_def
Fintype.card_coe
Multiset.toFinset_card_of_nodup
Polynomial.nodup_roots
Polynomial.separable_map
Complex.instNontrivial
Irreducible.separable
Rat.instCharZero
Polynomial.Splits.natDegree_eq_card_roots
IsAlgClosed.splits
Complex.isAlgClosed
Polynomial.natDegree_map
DivisionRing.isSimpleRing
splits_β„š_β„‚
IsScalarTower.rat
galActionHom_injective
Equiv.Perm.subgroup_eq_top_of_swap_mem
Fintype.card_eq_nat_card
Nat.card_congr
prime_degree_dvd_card
Equiv.Perm.card_support_eq_two
Set.toFinset_card
card_complex_roots_eq_card_real_add_card_not_gal_inv
Subgroup.mem_top
galActionHom_bijective_of_prime_degree' πŸ“–mathematicalIrreducible
Polynomial
Rat.semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Nat.Prime
Polynomial.natDegree
Fintype.card
Set.Elem
Real
Polynomial.rootSet
Rat.commRing
Real.commRing
Real.instIsDomain
DivisionRing.toRatAlgebra
Real.instDivisionRing
RCLike.charZero_rclike
Real.instRCLike
Polynomial.rootSetFintype
Complex
Complex.commRing
instIsDomain
Field.toSemifield
Complex.instField
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instCharZero
Function.Bijective
Polynomial.Gal
Rat.instField
Equiv.Perm
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Polynomial.instGroupGal
Equiv.Perm.permGroup
MonoidHom.instFunLike
galActionHom
splits_β„š_β„‚
β€”Real.instIsDomain
RCLike.charZero_rclike
instIsDomain
Complex.instCharZero
galActionHom_bijective_of_prime_degree
splits_β„š_β„‚
IsScalarTower.rat
Equiv.Perm.two_dvd_card_support
map_pow
MonoidHom.instMonoidHomClass
AlgEquiv.ext
Complex.conj_conj
map_one
MonoidHomClass.toOneHomClass
card_complex_roots_eq_card_real_add_card_not_gal_inv
Set.toFinset_card
splits_β„š_β„‚ πŸ“–mathematicalβ€”Fact
Polynomial.Splits
Complex
Complex.instSemiring
Polynomial.map
CommSemiring.toSemiring
Rat.commSemiring
algebraMap
DivisionRing.toRatAlgebra
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instNormedField
Complex.instCharZero
β€”Complex.instCharZero
IsAlgClosed.splits
Complex.isAlgClosed

Real

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_algEquiv_or πŸ“–mathematicalβ€”AlgEquiv
Real
instCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semiring
Algebra.id
Complex
Complex.instSemiring
NormedAlgebra.toAlgebra
normedField
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
RCLike.toNormedAlgebra
Complex.instRCLike
β€”IsAlgClosed.nonempty_algEquiv_or_of_finrank_eq_two
Complex.isAlgClosed
Complex.finrank_real_complex

---

← Back to Index