π Source: Mathlib/Analysis/Complex/Polynomial/Basic.lean
exists_root
isAlgClosed
degree_le_two
natDegree_le_two
card_complex_roots_eq_card_real_add_card_not_gal_inv
galActionHom_bijective_of_prime_degree
galActionHom_bijective_of_prime_degree'
splits_β_β
mul_star_dvd_of_aeval_eq_zero_im_ne_zero
quadratic_dvd_of_aeval_eq_zero_im_ne_zero
nonempty_algEquiv_or
WithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
Complex
instSemiring
Polynomial.IsRoot
Differentiable.apply_eq_of_tendsto_cocompact
instNontrivial
Differentiable.inv
Polynomial.differentiable
Filter.Tendsto.comp
Filter.tendsto_invβ_cobounded
Polynomial.tendsto_norm_atTop
isAbsoluteValueNorm
tendsto_norm_cobounded_atTop
Metric.cobounded_eq_cocompact
instProperSpace
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.funext
instIsDomain
CharZero.infinite
instCharZero
inv_injective
Polynomial.eval_zero
inv_zero
IsAlgClosed
instField
IsAlgClosed.of_exists_root
Polynomial.degree_pos_of_irreducible
Irreducible
Polynomial
Real
Real.semiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Preorder.toLE
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Polynomial.natDegree_le_iff_degree_le
Polynomial.natDegree
IsAlgClosed.exists_aeval_eq_zero
Complex.isAlgClosed
instFaithfulSMul_1
DivisionRing.isSimpleRing
Complex.instNontrivial
LT.lt.ne'
Complex.finrank_real_complex
minpoly.eq_of_irreducible
Polynomial.natDegree_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ne_zero
Polynomial.nontrivial
Real.instNontrivial
Polynomial.natDegree_C
add_zero
minpoly.natDegree_le
Complex.instFiniteDimensionalReal
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Real.instCommSemiring
semiring
Complex.instSemiring
algebraOfAlgebra
Algebra.id
NormedAlgebra.toAlgebra
Real.normedField
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
RCLike.toNormedAlgebra
Complex.instRCLike
AlgHom.funLike
aeval
Complex.instZero
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
Complex.commRing
instMul
instSub
Complex.instRing
X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Complex.instCommSemiring
starRingEnd
Complex.instStarRing
map
algebraMap
IsCoprime.mul_dvd
isCoprime_X_sub_C_of_isUnit_sub
sub_ne_zero
Complex.conj_eq_iff_im
eval_map_algebraMap
aeval_conj
Real.commRing
instAdd
Real.instRing
Monoid.toNatPow
Real.instMul
Real.instNatCast
Complex.re
Real.instMonoid
Norm.norm
Complex.instNorm
map_dvd_map'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
map_add
map_sub
map_X
map_C
Complex.ofReal_mul
Complex.add_conj
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
Complex.mul_conj'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Finset.card
Set.toFinset
Polynomial.rootSet
Rat.commRing
Field.toSemifield
Complex.instField
DivisionRing.toRatAlgebra
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Complex.instCharZero
Polynomial.rootSetFintype
Real.instIsDomain
Real.instDivisionRing
RCLike.charZero_rclike
Real.instRCLike
Set.Elem
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Rat.instField
Equiv.Perm.support
Set
Set.instMembership
Complex.instDecidableEq
MonoidHom
Polynomial.Gal
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Polynomial.instGroupGal
Equiv.Perm.permGroup
MonoidHom.instFunLike
galActionHom
AlgEquiv
Semifield.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
restrict
AlgEquiv.restrictScalars
Rat.commSemiring
Algebra.complexToReal
IsScalarTower.rat
SeminormedRing.toRing
Real.normedCommRing
Complex.addCommGroup
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
InnerProductSpace.toNormedSpace
instInnerProductSpaceRealComplex
Rat.instNormedField
NormedAlgebra.toNormedSpace
normedAlgebraRat
Complex.conjAe
Finset.eq_empty_of_isEmpty
Polynomial.rootSet_zero
Set.instIsEmptyElemEmptyCollection
Set.toFinset_congr
Set.toFinset_empty
RingHom.injective
Finset.card_image_of_injective
Subtype.coe_injective
Set.mem_toFinset
Polynomial.mem_rootSet_of_ne
Rat.isDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
AlgHomClass.toRingHomClass
Complex.ext
galActionHom_restrict
Polynomial.mem_rootSet
Equiv.Perm.mem_support
Finset.card_union_of_disjoint
Finset.disjoint_left
Rat.semiring
Nat.Prime
Fintype.card
Function.Bijective
Fintype.card_congr'
Polynomial.rootSet_def
Fintype.card_coe
Multiset.toFinset_card_of_nodup
Polynomial.nodup_roots
Polynomial.separable_map
Irreducible.separable
Rat.instCharZero
Polynomial.Splits.natDegree_eq_card_roots
IsAlgClosed.splits
Polynomial.natDegree_map
galActionHom_injective
Equiv.Perm.subgroup_eq_top_of_swap_mem
Fintype.card_eq_nat_card
Nat.card_congr
prime_degree_dvd_card
Equiv.Perm.card_support_eq_two
Set.toFinset_card
Subgroup.mem_top
Equiv.Perm.two_dvd_card_support
MonoidHom.instMonoidHomClass
AlgEquiv.ext
Complex.conj_conj
map_one
MonoidHomClass.toOneHomClass
Fact
Polynomial.Splits
Polynomial.map
instCommSemiring
normedField
IsAlgClosed.nonempty_algEquiv_or_of_finrank_eq_two
---
β Back to Index