Documentation Verification Report

RemovableSingularity

๐Ÿ“ Source: Mathlib/Analysis/Complex/RemovableSingularity.lean

Statistics

MetricCount
Definitions0
TheoremsanalyticAt_of_differentiable_on_punctured_nhds_of_continuousAt, differentiableOn_compl_singleton_and_continuousAt_iff, differentiableOn_dslope, differentiableOn_update_limUnder_insert_of_isLittleO, differentiableOn_update_limUnder_of_bddAbove, differentiableOn_update_limUnder_of_isLittleO, tendsto_limUnder_of_differentiable_on_punctured_nhds_of_bounded_under, tendsto_limUnder_of_differentiable_on_punctured_nhds_of_isLittleO, two_pi_I_inv_smul_circleIntegral_sub_sq_inv_smul_of_differentiable
9
Total9

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
analyticAt_of_differentiable_on_punctured_nhds_of_continuousAt ๐Ÿ“–mathematicalFilter.Eventually
Complex
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
ContinuousAt
AnalyticAt
instNormedAddCommGroup
InnerProductSpace.toNormedSpace
instRCLike
RCLike.innerProductSpace
โ€”Filter.HasBasis.mem_iff
nhdsWithin_hasBasis
Metric.nhds_basis_closedBall
CanLift.prf
NNReal.canLift
LT.lt.le
ContinuousAt.continuousWithinAt
eq_or_ne
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
HasFPowerSeriesOnBall.analyticAt
hasFPowerSeriesOnBall_of_differentiable_off_countable
Set.countable_singleton
Set.diff_subset_diff_left
Metric.ball_subset_closedBall
differentiableOn_compl_singleton_and_continuousAt_iff ๐Ÿ“–mathematicalSet
Complex
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Set.instSDiff
Set.instSingletonSet
ContinuousAt
โ€”eq_or_ne
DifferentiableAt.differentiableWithinAt
AnalyticAt.differentiableAt
analyticAt_of_differentiable_on_punctured_nhds_of_continuousAt
eventually_nhdsWithin_iff
Filter.Eventually.mono
eventually_mem_nhds_iff
DifferentiableOn.differentiableAt
Filter.inter_mem
IsOpen.mem_nhds
isOpen_ne
T5Space.toT1Space
T6Space.toT5Space
instT6SpaceOfMetrizableSpace
EMetricSpace.metrizableSpace
Ne.nhdsWithin_diff_singleton
DifferentiableOn.mono
Set.diff_subset
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
differentiableOn_dslope ๐Ÿ“–mathematicalSet
Complex
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
dslope
โ€”DifferentiableOn.of_dslope
differentiableOn_compl_singleton_and_continuousAt_iff
differentiableOn_dslope_of_notMem
DifferentiableOn.mono
Set.diff_subset
continuousAt_dslope_same
DifferentiableOn.differentiableAt
differentiableOn_update_limUnder_insert_of_isLittleO ๐Ÿ“–mathematicalSet
Complex
Filter
Filter.instMembership
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Compl.compl
Set.instCompl
Set.instSingletonSet
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
instNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
instInv
instSub
Function.update
instDecidableEq
limUnder
AddTorsor.nonempty
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
Set.instInsert
โ€”differentiableOn_update_limUnder_of_isLittleO
insert_mem_nhds_iff
DifferentiableOn.mono
differentiableOn_update_limUnder_of_bddAbove ๐Ÿ“–mathematicalSet
Complex
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Set.instSDiff
Set.instSingletonSet
BddAbove
Real
Real.instLE
Set.image
Norm.norm
NormedAddCommGroup.toNorm
Function.update
instDecidableEq
limUnder
AddTorsor.nonempty
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
nhdsWithin
Compl.compl
Set.instCompl
โ€”differentiableOn_update_limUnder_of_isLittleO
Filter.IsBoundedUnder.isLittleO_sub_self_inv
Filter.eventually_map
mem_nhdsWithin_iff_exists_mem_nhds_inter
norm_sub_le_of_le
Set.mem_image_of_mem
le_rfl
differentiableOn_update_limUnder_of_isLittleO ๐Ÿ“–mathematicalSet
Complex
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Set.instSDiff
Set.instSingletonSet
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
instNorm
nhdsWithin
Compl.compl
Set.instCompl
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
instInv
instSub
Function.update
instDecidableEq
limUnder
AddTorsor.nonempty
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
โ€”DifferentiableOn.smul
NormedSpace.toIsBoundedSMul
IsScalarTower.left
DifferentiableOn.sub_const
differentiableOn_id
continuousWithinAt_compl_self
Asymptotics.IsLittleO.tendsto_inv_smul_nhds_zero
NormedSpace.toNormSMulClass
Filter.Tendsto.smul
IsBoundedSMul.continuousSMul
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousWithinAt.tendsto
continuousWithinAt_id
tendsto_const_nhds
inv_inv
sub_add_cancel
zero_add
Filter.Tendsto.add
IsTopologicalAddGroup.toContinuousAdd
continuousAt_update_same
ContinuousOn.continuousAt
DifferentiableOn.continuousOn
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
dslope_sub_smul
differentiableOn_dslope
differentiableOn_compl_singleton_and_continuousAt_iff
AddTorsor.nonempty
Filter.Tendsto.limUnder_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
PerfectSpace.not_isolated
instPerfectSpace
tendsto_limUnder_of_differentiable_on_punctured_nhds_of_bounded_under ๐Ÿ“–mathematicalFilter.Eventually
Complex
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.IsBoundedUnder
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Filter.Tendsto
nhds
limUnder
AddTorsor.nonempty
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
โ€”tendsto_limUnder_of_differentiable_on_punctured_nhds_of_isLittleO
Filter.IsBoundedUnder.isLittleO_sub_self_inv
tendsto_limUnder_of_differentiable_on_punctured_nhds_of_isLittleO ๐Ÿ“–mathematicalFilter.Eventually
Complex
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Asymptotics.IsLittleO
NormedAddCommGroup.toNorm
instNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
instInv
instSub
Filter.Tendsto
nhds
limUnder
AddTorsor.nonempty
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddTorsor.toAddTorsor
SeminormedAddCommGroup.toNormedAddTorsor
โ€”DifferentiableAt.differentiableWithinAt
AddTorsor.nonempty
differentiableOn_update_limUnder_of_isLittleO
eventually_nhdsWithin_iff
continuousAt_update_same
DifferentiableAt.continuousAt
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
DifferentiableOn.differentiableAt
two_pi_I_inv_smul_circleIntegral_sub_sq_inv_smul_of_differentiable ๐Ÿ“–mathematicalIsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
Set
Set.instHasSubset
Metric.closedBall
DifferentiableOn
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Set.instMembership
Metric.ball
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
instInv
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
ofReal
Real.pi
I
circleIntegral
Monoid.toNatPow
instSub
deriv
โ€”differentiableOn_dslope
IsOpen.mem_nhds
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_closedBall
Nat.instAtLeastTwoHAddOfNat
DiffContOnCl.two_pi_i_inv_smul_circleIntegral_sub_inv_smul
DifferentiableOn.diffContOnCl_ball
dslope_same
ContinuousOn.invโ‚€
IsTopologicalDivisionRing.toContinuousInvโ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.continuousOn
Continuous.pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_id'
continuous_const
Disjoint.ne_of_mem
Metric.sphere_disjoint_ball
sub_eq_zero
sq_eq_zero_iff
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ContinuousOn.circleIntegrable
LT.lt.le
Metric.pos_of_mem_ball
ContinuousOn.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ContinuousOn.mono
DifferentiableOn.continuousOn
IsTopologicalSemiring.toContinuousAdd
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalAddGroup.toContinuousAdd
Metric.sphere_subset_closedBall
continuousOn_const
zpow_neg
circleIntegral.integral_sub_zpow_of_ne
smul_sub
circleIntegral.integral_sub
circleIntegral.integral_smul_const
zero_smul
sub_zero
circleIntegral.integral_congr
sq
mul_inv
dslope_of_ne
IsScalarTower.left

---

โ† Back to Index