Documentation Verification Report

Schwarz

πŸ“ Source: Mathlib/Analysis/Complex/Schwarz.lean

Statistics

MetricCount
Definitions0
Theoremsaffine_of_mapsTo_ball_of_exists_norm_dslope_eq_div, affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div', affine_of_mapsTo_ball_of_norm_dslope_eq_div, dist_le_dist_of_mapsTo_ball, dist_le_dist_of_mapsTo_ball_self, dist_le_div_mul_dist_of_mapsTo_ball, dist_le_mul_div_pow_of_mapsTo_ball_of_isLittleO, norm_deriv_le_div_of_mapsTo_ball, norm_deriv_le_one_of_mapsTo_ball, norm_dslope_le_div_of_mapsTo_ball, norm_fderiv_le_div_of_mapsTo_ball, norm_fderiv_le_one_of_mapsTo_ball, norm_le_norm_of_mapsTo_ball, norm_le_norm_of_mapsTo_ball_self
14
Total14

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Norm.norm
NormedAddCommGroup.toNorm
dslope
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Set.EqOn
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
instSub
β€”affine_of_mapsTo_ball_of_norm_dslope_eq_div
affine_of_mapsTo_ball_of_exists_norm_dslope_eq_div' πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Norm.norm
NormedAddCommGroup.toNorm
dslope
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Set.EqOn
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
instSub
β€”affine_of_mapsTo_ball_of_norm_dslope_eq_div
affine_of_mapsTo_ball_of_norm_dslope_eq_div πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Norm.norm
NormedAddCommGroup.toNorm
dslope
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Set.EqOn
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
Module.toDistribMulAction
instSub
β€”SeminormedAddCommGroup.to_isUniformAddGroup
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Metric.nonempty_ball
ContinuousLinearMap.dslope_comp
DifferentiableOn.differentiableAt
Metric.ball_mem_nhds
norm_dslope_le_div_of_mapsTo_ball
Differentiable.comp_differentiableOn
ContinuousLinearMap.differentiable
UniformSpace.Completion.dist_eq
isMaxOn_iff
UniformSpace.Completion.norm_coe
differentiableOn_dslope
UniformSpace.Completion.completeSpace
IsOpen.mem_nhds
Metric.isOpen_ball
Metric.mem_ball_self
norm_eqOn_of_isPreconnected_of_isMaxOn
Convex.isPreconnected
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
convex_ball
DifferentiableOn.add_const
IsMaxOn.norm_add_self
eq_of_norm_eq_of_norm_add_eq
SameRay.norm_add
SameRay.rfl
Real.instIsStrictOrderedRing
sub_smul_dslope
add_sub_cancel
dist_le_dist_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
β€”div_self
LT.lt.ne'
Metric.nonempty_ball
one_mul
dist_le_div_mul_dist_of_mapsTo_ball
dist_le_dist_of_mapsTo_ball_self πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
β€”dist_le_dist_of_mapsTo_ball
dist_le_div_mul_dist_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”LE.le.trans_eq
dist_le_mul_div_pow_of_mapsTo_ball_of_isLittleO
pow_zero
NormedDivisionRing.to_normOneClass
sub_self
Filter.Tendsto.sub_const
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousOn.continuousAt
DifferentiableOn.continuousOn
IsTopologicalAddGroup.toContinuousAdd
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Metric.ball_mem_nhds
Metric.nonempty_ball
zero_add
pow_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div'
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
dist_le_mul_div_pow_of_mapsTo_ball_of_isLittleO πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Asymptotics.IsLittleO
Real
NormedAddCommGroup.toNorm
Real.norm
nhds
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Monoid.toNatPow
Real.instMonoid
Norm.norm
Set
Set.instMembership
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Metric.nonempty_ball
Metric.nonempty_closedBall
eq_or_ne
dist_self
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
dist_nonneg
exists_dual_vector
Iff.not
norm_sub_eq_zero_iff
dist_lineMap_left
dist_comm
dist_zero_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Set.MapsTo.comp
AffineMap.lineMap_apply_zero
RingHomIsometric.ids
one_mul
LipschitzWith.mapsTo_closedBall
ContinuousLinearMap.lipschitz
Differentiable.comp_differentiableOn
ContinuousLinearMap.differentiable
DifferentiableOn.comp
AffineMap.differentiableOn
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
sub_zero
Asymptotics.IsBigO.trans_isLittleO
ContinuousLinearMap.isBigO_comp
Asymptotics.IsLittleO.trans_isBigO
Asymptotics.IsLittleO.comp_tendsto
Continuous.tendsto
Continuous.comp'
AffineMap.lineMap_continuous_uncurry
instIsTopologicalAddTorsor_1
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Continuous.prodMk
continuous_const
continuous_id'
mul_comm
mul_pow
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Asymptotics.IsBigO.const_mul_left
Asymptotics.IsBigO.norm_left
Asymptotics.isBigO_refl
CStarRing.norm_of_mem_unitary
RCLike.instCStarRing
instNontrivial
SubmonoidClass.toOneMemClass
Submonoid.instSubmonoidClass
dist_eq_norm_sub
AffineMap.lineMap_apply_one
map_sub
norm_real
norm_norm
one_div
inv_div
norm_deriv_le_div_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
deriv
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”norm_deriv_eq_norm_fderiv
norm_fderiv_le_div_of_mapsTo_ball
norm_deriv_le_one_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
deriv
Real.instOne
β€”LE.le.trans_eq
norm_deriv_le_div_of_mapsTo_ball
div_self
LT.lt.ne'
norm_dslope_le_div_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
addCommGroup
instModuleSelf
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Set
Set.instMembership
Real
Real.instLE
Norm.norm
NormedAddCommGroup.toNorm
dslope
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”eq_or_ne
dslope_same
norm_deriv_le_div_of_mapsTo_ball
dist_self
dslope_of_ne
slope_def_module
norm_smul
NormedSpace.toNormSMulClass
norm_inv
dist_eq_norm_sub
div_eq_inv_mul
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
dist_le_div_mul_dist_of_mapsTo_ball
norm_fderiv_le_div_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.hasOpNorm
fderiv
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Metric.nonempty_closedBall
Set.MapsTo.nonempty
Metric.nonempty_ball
norm_fderiv_le_of_lip'
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Filter.mp_mem
Metric.ball_mem_nhds
Filter.univ_mem'
dist_eq_norm_sub
dist_le_div_mul_dist_of_mapsTo_ball
norm_fderiv_le_one_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Real.instZero
Real.instLE
Norm.norm
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.hasOpNorm
fderiv
Real.instOne
β€”div_self
LT.lt.ne'
norm_fderiv_le_div_of_mapsTo_ball
norm_le_norm_of_mapsTo_ball πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Norm.norm
NormedAddCommGroup.toNorm
Real.instLEβ€”dist_zero_right
dist_le_dist_of_mapsTo_ball
mem_ball_zero_iff
norm_le_norm_of_mapsTo_ball_self πŸ“–mathematicalDifferentiableOn
Complex
DenselyNormedField.toNontriviallyNormedField
instDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
instNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Metric.ball
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set.MapsTo
Metric.closedBall
Real
Real.instLT
Norm.norm
NormedAddCommGroup.toNorm
Real.instLEβ€”norm_le_norm_of_mapsTo_ball

---

← Back to Index