Documentation Verification Report

Tietze

πŸ“ Source: Mathlib/Analysis/Complex/Tietze.lean

Statistics

MetricCount
Definitions0
Theoremsexists_norm_eq_restrict_eq, instTietzeExtension, instTietzeExtensionBall, instTietzeExtensionClosedBall, instTietzeExtension, instTietzeExtensionTVS, instTietzeExtensionUnitBall, instTietzeExtensionUnitClosedBall, of_tvs, instTietzeExtension
10
Total10

BoundedContinuousFunction

Theorems

NameKindAssumesProvesValidatesDepends On
exists_norm_eq_restrict_eq πŸ“–mathematicalβ€”Norm.norm
BoundedContinuousFunction
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instNorm
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
restrict
β€”norm_zero
Metric.instTietzeExtensionClosedBall
dist_zero_right
norm_coe_le_norm
BoundedContinuousMapClass.toContinuousMapClass
instBoundedContinuousMapClass
ContinuousMap.exists_forall_mem_restrict_eq
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
le_antisymm
norm_le
le_of_lt
lt_of_le_of_ne'
norm_nonneg
le_rfl
ext

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
instNormedField
β€”TietzeExtension.of_tvs
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
instT2Space
FiniteDimensional.rclike_to_real
Real.instCompleteSpace
Real.instTietzeExtension

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtensionBall πŸ“–mathematicalReal
Real.instLT
Real.instZero
TietzeExtension
Set.Elem
ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”TietzeExtension.of_homeo
Set.instTietzeExtensionUnitBall
instTietzeExtensionClosedBall πŸ“–mathematicalReal
Real.instLT
Real.instZero
TietzeExtension
Set.Elem
closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”TietzeExtension.of_homeo
Set.instTietzeExtensionUnitClosedBall
NormedSpace.toNormSMulClass
Nat.cast_zero
algebraMap.coe_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Set.ext
dist_zero_right
dist_add_self_left
norm_smul
RCLike.norm_ofReal
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.le
mul_le_iff_le_one_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing

RCLike

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
toDenselyNormedField
β€”TietzeExtension.of_tvs
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
FiniteDimensional.rclike_to_real
Real.instCompleteSpace
Real.instTietzeExtension
instTietzeExtensionTVS πŸ“–mathematicalβ€”TietzeExtensionβ€”TietzeExtension.of_tvs
toCompleteSpace
instTietzeExtension

Set

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtensionUnitBall πŸ“–mathematicalβ€”TietzeExtension
Elem
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instOne
instTopologicalSpaceSubtype
Set
instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”TietzeExtension.of_homeo
RCLike.instTietzeExtensionTVS
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instTietzeExtensionUnitClosedBall πŸ“–mathematicalβ€”TietzeExtension
Elem
Metric.closedBall
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instOne
instTopologicalSpaceSubtype
Set
instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
continuous_piecewise
frontier_closedBall
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
sub_zero
inv_one
one_smul
continuousOn_id
ContinuousOn.smul
ContinuousOn.invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
ContinuousOn.norm
closure_compl
interior_closedBall
dist_zero_right
norm_pos_iff
LT.lt.trans_le
one_pos
Real.instZeroLEOneClass
TietzeExtension.of_retract
RCLike.instTietzeExtensionTVS
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_subtype_val
piecewise_eq_of_mem
piecewise.congr_simp
RCLike.real_smul_eq_coe_smul
piecewise_eq_of_notMem
norm_zero
inv_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
smul_zero
dist_self
map_invβ‚€
norm_smul_inv_norm
Continuous.codRestrict
ContinuousMap.ext

TietzeExtension

Theorems

NameKindAssumesProvesValidatesDepends On
of_tvs πŸ“–mathematicalβ€”TietzeExtensionβ€”of_homeo
Pi.instTietzeExtension
RingHomInvPair.ids
Pi.topologicalAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
instContinuousSMulForall
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Finite.of_fintype
isNoetherian_of_isNoetherianRing_of_finite
IsSimpleModule.instIsNoetherian
instIsSimpleModule

unitInterval

Theorems

NameKindAssumesProvesValidatesDepends On
instTietzeExtension πŸ“–mathematicalβ€”TietzeExtension
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
eq_closedBall
Metric.instTietzeExtensionClosedBall
FiniteDimensional.rclike_to_real
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo

---

← Back to Index