| Metric | Count |
Definitionscos, cosh, cot, sin, sinh, tan, tanh, evalCosh, cos, cosh, cot, sin, sinh, tan, tanh | 15 |
Theoremscos_add, cos_add_cos, cos_add_mul_I, cos_add_sin_I, cos_add_sin_mul_I_pow, cos_bound, cos_conj, cos_eq, cos_mul_I, cos_neg, cos_ofReal_im, cos_ofReal_re, cos_sq, cos_sq', cos_sq_add_sin_sq, cos_sub, cos_sub_cos, cos_sub_sin_I, cos_three_mul, cos_two_mul, cos_two_mul', cos_zero, cosh_add, cosh_add_sinh, cosh_conj, cosh_mul_I, cosh_neg, cosh_ofReal_im, cosh_ofReal_re, cosh_sq, cosh_sq_sub_sinh_sq, cosh_sub, cosh_sub_sinh, cosh_three_mul, cosh_two_mul, cosh_zero, cot_conj, cot_eq_cos_div_sin, cot_inv_eq_tan, enorm_exp_I_mul_ofReal, enorm_exp_ofReal_mul_I, exp_add_mul_I, exp_eq_exp_re_mul_sin_add_cos, exp_im, exp_mul_I, exp_ofReal_mul_I_im, exp_ofReal_mul_I_re, exp_re, exp_sub_cosh, exp_sub_sinh, inv_one_add_tan_sq, nnnorm_exp_I_mul_ofReal, nnnorm_exp_ofReal_mul_I, norm_cos_add_sin_mul_I, norm_exp, norm_exp_I_mul_ofReal, norm_exp_I_mul_ofReal_sub_one, norm_exp_eq_iff_re_eq, norm_exp_ofReal_mul_I, ofReal_cos, ofReal_cos_ofReal_re, ofReal_cosh, ofReal_cosh_ofReal_re, ofReal_cot, ofReal_cot_ofReal_re, ofReal_sin, ofReal_sin_ofReal_re, ofReal_sinh, ofReal_sinh_ofReal_re, ofReal_tan, ofReal_tan_ofReal_re, ofReal_tanh, ofReal_tanh_ofReal_re, one_add_tan_sq_mul_cos_sq_eq_one, sin_add, sin_add_mul_I, sin_add_sin, sin_bound, sin_conj, sin_eq, sin_mul_I, sin_neg, sin_ofReal_im, sin_ofReal_re, sin_sq, sin_sq_add_cos_sq, sin_sub, sin_sub_sin, sin_three_mul, sin_two_mul, sin_zero, sinh_add, sinh_add_cosh, sinh_conj, sinh_mul_I, sinh_neg, sinh_ofReal_im, sinh_ofReal_re, sinh_sq, sinh_sub, sinh_sub_cosh, sinh_three_mul, sinh_two_mul, sinh_zero, tan_conj, tan_eq_sin_div_cos, tan_inv_eq_cot, tan_mul_I, tan_mul_cos, tan_neg, tan_ofReal_im, tan_ofReal_re, tan_sq_div_one_add_tan_sq, tan_zero, tanh_conj, tanh_eq_sinh_div_cosh, tanh_mul_I, tanh_neg, tanh_ofReal_im, tanh_ofReal_re, tanh_zero, two_cos, two_cosh, two_sin, two_sinh, abs_cos_eq_sqrt_one_sub_sin_sq, abs_cos_le_one, abs_sin_eq_sqrt_one_sub_cos_sq, abs_sin_le_one, abs_tanh_lt_one, cos_abs, cos_add, cos_add_cos, cos_bound, cos_le_one, cos_neg, cos_one_le, cos_one_pos, cos_pos_of_le_one, cos_sq, cos_sq', cos_sq_add_sin_sq, cos_sq_le_one, cos_sub, cos_sub_cos, cos_three_mul, cos_two_mul, cos_two_mul', cos_two_neg, cos_zero, cosh_abs, cosh_add, cosh_add_sinh, cosh_eq, cosh_neg, cosh_pos, cosh_sq, cosh_sq', cosh_sq_sub_sinh_sq, cosh_sub, cosh_sub_sinh, cosh_three_mul, cosh_two_mul, cosh_zero, cot_eq_cos_div_sin, cot_inv_eq_tan, exp_sub_cosh, exp_sub_sinh, inv_one_add_tan_sq, inv_sqrt_one_add_tan_sq, neg_one_le_cos, neg_one_le_sin, neg_one_lt_tanh, one_add_tan_sq_mul_cos_sq_eq_one, sin_add, sin_add_sin, sin_bound, sin_le_one, sin_neg, sin_pos_of_pos_of_le_one, sin_pos_of_pos_of_le_two, sin_sq, sin_sq_add_cos_sq, sin_sq_eq_half_sub, sin_sq_le_one, sin_sub, sin_sub_sin, sin_three_mul, sin_two_mul, sin_zero, sinh_add, sinh_add_cosh, sinh_eq, sinh_lt_cosh, sinh_neg, sinh_sq, sinh_sub, sinh_sub_cosh, sinh_three_mul, sinh_two_mul, sinh_zero, tan_div_sqrt_one_add_tan_sq, tan_eq_sin_div_cos, tan_inv_eq_cot, tan_mul_cos, tan_neg, tan_sq_div_one_add_tan_sq, tan_zero, tanh_eq, tanh_eq_sinh_div_cosh, tanh_lt_one, tanh_neg, tanh_sq_lt_one, tanh_zero, two_mul_cos_mul_cos, two_mul_sin_mul_cos, two_mul_sin_mul_sin | 217 |
| Total | 232 |
| Name | Category | Theorems |
cos π | CompOp | 173 mathmath: cos_sub_pi, Polynomial.Chebyshev.S_two_mul_complex_cos, cos_eq_tsum, EulerSine.integral_cos_mul_cos_pow, HasDerivAt.ccos, one_add_tan_sq_mul_cos_sq_eq_one, sin_eq_zero_iff_cos_eq, HasFDerivWithinAt.ccos, cos_three_mul, sin_pi_div_two_sub, HasStrictFDerivAt.csin, cos_mul_I, cos_sub_sin_I, cos_eq_one_iff, exp_add_mul_I, range_cos, cos_ofReal_re, cos_eq_zero_iff, cos_sub, cos_antiperiodic, cos_add_nat_mul_two_pi, hasStrictDerivAt_tan, deriv_cos, norm_cos_add_sin_mul_I, cos_pi_div_two, HasFDerivWithinAt.csin, continuousOn_cos, cos_conj, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, cos_nat_mul_two_pi_sub_pi, ContDiff.ccos, EulerSine.integral_cos_mul_cos_pow_aux, HasStrictDerivAt.csin, Differentiable.ccos, arg_cos_add_sin_mul_I, cos_eq_iff_quadratic, riemannZeta_one_sub, cos_nat_mul_two_pi, sin_two_mul, ofReal_cos_ofReal_re, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, cos_eq_tsum', cos_pi_sub, cos_two_mul, cos_sub_two_pi, sin_sub_pi_div_two, Measurable.ccos, cos_add_sin_mul_I_pow, arg_mul_cos_add_sin_mul_I, DifferentiableOn.ccos, cos_int_mul_two_pi_sub, iteratedDeriv_odd_sin, HurwitzZeta.cosZeta_one_sub, EulerSine.sin_pi_mul_eq, fderivWithin_ccos, ContDiffOn.ccos, HasDerivAt.csin, cos_add_pi, HasStrictFDerivAt.ccos, cos_add_sin_I, ContDiffWithinAt.ccos, HasFDerivAt.ccos, hasDerivAt_cos, cos_sub_nat_mul_two_pi, cos_int_mul_two_pi_add_pi, cos_two_mul', cos_surjective, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, measurable_cos, HurwitzZeta.hurwitzZetaEven_one_sub, deriv_csin, tan_mul_cos, cos_add, norm_mul_cos_add_sin_mul_I, analyticOn_cos, cos_periodic, tan_eq_sin_div_cos, cos_bound, continuousOn_tan, iteratedDeriv_even_cos, iteratedDeriv_add_one_sin, sin_sq_add_cos_sq, fderiv_ccos, cos_add_pi_div_two, hasStrictDerivAt_cos, HasDerivWithinAt.csin, iteratedDeriv_add_one_cos, continuous_cos, hasSum_cos', cos_add_cos, hasStrictDerivAt_sin, derivWithin_ccos, cos_sq_add_sin_sq, cos_sub_pi_div_two, deriv_tan, cos_zero, ContDiffAt.ccos, Polynomial.Chebyshev.T_complex_cos, cos_add_mul_I, cos_int_mul_two_pi_sub_pi, cos_add_two_pi, HasFDerivAt.csin, derivWithin_csin, hasDerivAt_sin, deriv_ccos, sin_add, HasDerivWithinAt.ccos, cos_neg, sin_eq, EulerSine.antideriv_cos_comp_const_mul, fderivWithin_csin, EulerSine.antideriv_sin_comp_const_mul, cot_eq_cos_div_sin, deriv_cos', isIntegral_two_mul_cos_rat_mul_pi, Gammaβ_one_sub_mul_Gammaβ_one_add, iteratedDeriv_odd_cos, ofReal_cos, sin_sub, cos_eq, Polynomial.Chebyshev.U_complex_cos, sin_add_sin, Polynomial.Chebyshev.C_two_mul_complex_cos, sin_add_mul_I, cos_pi_div_two_sub, cos_sub_cos, cos_eq_zero_iff_sin_eq, exp_eq_exp_re_mul_sin_add_cos, AEMeasurable.ccos, continuous_tan, deriv_sin, cos_sq, hasDerivAt_tan, Gammaβ_div_Gammaβ_one_sub, cos_eq_neg_one_iff, logDeriv_cos, differentiable_iteratedDeriv_cos, sin_sq, differentiable_cos, cos_nat_mul_two_pi_sub, analyticAt_cos, analyticOnNhd_cos, inv_one_add_tan_sq, cos_nat_mul_two_pi_add_pi, inv_Gammaβ_one_sub, fderiv_csin, exp_mul_I, isAlgebraic_cos_rat_mul_pi, contDiff_cos, arg_mul_cos_add_sin_mul_I_sub, cos_two_pi_sub, DifferentiableAt.ccos, sin_sub_sin, hasSum_cos, cos_ofReal_im, differentiableAt_cos, cos_eq_cos_iff, cos_sq', integral_cos_mul_complex, cosh_mul_I, cos_int_mul_two_pi, cos_two_pi, cos_add_int_mul_two_pi, analyticWithinAt_cos, arg_cos_add_sin_mul_I_eq_toIocMod, DifferentiableWithinAt.ccos, EulerSine.integral_cos_mul_cos_pow_even, HasStrictDerivAt.ccos, cos_pi, cos_sub_int_mul_two_pi, sin_add_pi_div_two, two_cos
|
cosh π | CompOp | 89 mathmath: HasFDerivWithinAt.ccosh, iteratedDeriv_even_cosh, analyticAt_cosh, cos_mul_I, fderivWithin_csinh, ContDiffOn.ccosh, ofReal_cosh_ofReal_re, deriv_csinh, iteratedDeriv_odd_sinh, cosh_conj, cosh_three_mul, analyticWithinAt_cosh, sinh_add_cosh, fderivWithin_ccosh, contDiff_cosh, analyticOn_cosh, cosh_ofReal_im, HasDerivWithinAt.csinh, cosh_sq_sub_sinh_sq, AEMeasurable.ccosh, continuous_cosh, DifferentiableAt.ccosh, HasDerivAt.csinh, hasStrictDerivAt_sinh, HasFDerivWithinAt.csinh, deriv_ccosh, HasDerivAt.ccosh, HasStrictDerivAt.csinh, Polynomial.Chebyshev.T_complex_cosh, sinh_sq, Polynomial.Chebyshev.C_two_mul_complex_cosh, hasDerivAt_sinh, tanh_eq_sinh_div_cosh, HasDerivWithinAt.ccosh, cosh_zero, cosh_sq, derivWithin_ccosh, HasFDerivAt.ccosh, cosh_eq_tsum, two_cosh, sinh_two_mul, cosh_two_mul, ContDiff.ccosh, cosh_sub, ContDiffAt.ccosh, iteratedDeriv_add_one_sinh, sinh_add, ContDiffWithinAt.ccosh, deriv_cosh, Polynomial.Chebyshev.U_complex_cosh, analyticOnNhd_cosh, DifferentiableWithinAt.ccosh, hasDerivAt_cosh, cos_add_mul_I, exp_sub_cosh, hasStrictDerivAt_cosh, Polynomial.Chebyshev.S_two_mul_complex_cosh, sin_eq, differentiableAt_cosh, exp_sub_sinh, Measurable.ccosh, cos_eq, fderiv_ccosh, DifferentiableOn.ccosh, sin_add_mul_I, HasStrictDerivAt.ccosh, measurable_cosh, cosh_add, iteratedDeriv_add_one_cosh, cosh_neg, deriv_sinh, derivWithin_csinh, fderiv_csinh, HasFDerivAt.csinh, differentiable_cosh, sinh_sub, ofReal_cosh, HasStrictFDerivAt.ccosh, iteratedDeriv_odd_cosh, hasSum_cosh, cosh_ofReal_re, HasStrictFDerivAt.csinh, cosh_mul_I, sinh_sub_cosh, Differentiable.ccosh, cosh_sub_sinh, logDeriv_cosh, cosh_add_sinh, differentiable_iteratedDeriv_cosh
|
cot π | CompOp | 18 mathmath: cot_inv_eq_tan, ofReal_cot, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow, cot_series_rep', logDeriv_sin_div_eq_cot, logDeriv_sin, ofReal_cot_ofReal_re, cot_pi_eq_exp_ratio, cot_series_rep, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow, cot_conj, cot_pi_mul_contDiffWithinAt, tendsto_logDeriv_euler_cot_sub, cot_eq_cos_div_sin, iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum, cot_eq_exp_ratio, tan_inv_eq_cot, pi_mul_cot_pi_q_exp
|
sin π | CompOp | 161 mathmath: AEMeasurable.csin, Polynomial.Chebyshev.S_two_mul_complex_cos, ContDiffAt.csin, HasDerivAt.ccos, differentiableAt_sin, Measurable.csin, Differentiable.csin, sin_eq_zero_iff_cos_eq, HasFDerivWithinAt.ccos, sin_pi_div_two_sub, HasStrictFDerivAt.csin, cos_sub_sin_I, exp_add_mul_I, analyticOn_sin, cos_sub, HasProdUniformlyOn_sineTerm_prod_on_compact, sin_eq_neg_one_iff, range_sin, continuous_sin, sin_int_mul_pi, sin_eq_zero_iff, ofReal_sin_ofReal_re, deriv_cos, norm_cos_add_sin_mul_I, HasFDerivWithinAt.csin, sin_nat_mul_pi, sin_int_mul_two_pi_sub, sin_bound, EulerSine.integral_cos_mul_cos_pow_aux, HasStrictDerivAt.csin, arg_cos_add_sin_mul_I, sin_sub_nat_mul_two_pi, sin_nat_mul_two_pi_sub, sin_two_mul, analyticAt_sin, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, sin_sub_two_pi, sin_sub_pi_div_two, cos_add_sin_mul_I_pow, arg_mul_cos_add_sin_mul_I, ContDiffOn.csin, continuousOn_sin, differentiable_iteratedDeriv_sin, iteratedDeriv_odd_sin, tendsto_logDeriv_euler_sin_div, logDeriv_sin_div_eq_cot, EulerSine.sin_pi_mul_eq, logDeriv_sin, fderivWithin_ccos, isAlgebraic_sin_rat_mul_pi, HasDerivAt.csin, sin_two_pi, HasStrictFDerivAt.ccos, analyticOnNhd_sin, hasSum_sin, sin_add_two_pi, cos_add_sin_I, sin_eq_sin_iff, HasProdLocallyUniformlyOn_euler_sin_prod, sin_pi_sub, HasFDerivAt.ccos, sin_three_mul, hasDerivAt_cos, cos_two_mul', tendsto_euler_sin_prod, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, sin_conj, isIntegral_two_mul_sin_rat_mul_pi, deriv_csin, DifferentiableWithinAt.csin, tan_mul_cos, sin_antiperiodic, cos_add, norm_mul_cos_add_sin_mul_I, differentiable_sin, sin_eq_one_iff, tan_eq_sin_div_cos, iteratedDeriv_add_one_sin, sin_sq_add_cos_sq, sin_ofReal_re, fderiv_ccos, cos_add_pi_div_two, hasStrictDerivAt_cos, HasDerivWithinAt.csin, iteratedDeriv_add_one_cos, hasStrictDerivAt_sin, derivWithin_ccos, cos_sq_add_sin_sq, sin_pi_div_two, sin_periodic, cos_sub_pi_div_two, ContDiffWithinAt.csin, cos_add_mul_I, HasFDerivAt.csin, derivWithin_csin, hasDerivAt_sin, deriv_ccos, sin_add, HasDerivWithinAt.ccos, sin_eq, EulerSine.antideriv_cos_comp_const_mul, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, fderivWithin_csin, sin_add_int_mul_two_pi, EulerSine.antideriv_sin_comp_const_mul, cot_eq_cos_div_sin, deriv_cos', sin_pi, sin_eq_tsum, measurable_sin, euler_sineTerm_tprod, iteratedDeriv_odd_cos, sin_sub, cos_eq, Polynomial.Chebyshev.U_complex_cos, sin_add_sin, sin_mul_I, sin_sub_pi, sin_add_mul_I, iteratedDeriv_even_sin, cos_pi_div_two_sub, cos_sub_cos, cos_eq_zero_iff_sin_eq, exp_eq_exp_re_mul_sin_add_cos, ofReal_sin, sin_neg, sin_sub_int_mul_two_pi, sin_two_pi_sub, sin_ofReal_im, deriv_sin, analyticWithinAt_sin, tan_sq_div_one_add_tan_sq, sin_zero, hasSum_sin', Gamma_mul_Gamma_one_sub, sin_eq_tsum', sin_surjective, sin_sq, fderiv_csin, exp_mul_I, contDiff_sin, arg_mul_cos_add_sin_mul_I_sub, tendsto_euler_sin_prod', sin_sub_sin, HurwitzZeta.hurwitzZetaOdd_one_sub, sinh_mul_I, sin_add_nat_mul_two_pi, ContDiff.csin, cos_sq', DifferentiableOn.csin, integral_cos_mul_complex, HurwitzZeta.sinZeta_one_sub, inv_Gammaβ_two_sub, arg_cos_add_sin_mul_I_eq_toIocMod, HasStrictDerivAt.ccos, DifferentiableAt.csin, isEquivalent_sin, sin_add_pi, two_sin, sin_add_pi_div_two
|
sinh π | CompOp | 87 mathmath: HasFDerivWithinAt.ccosh, sinh_conj, fderivWithin_csinh, deriv_csinh, DifferentiableAt.csinh, iteratedDeriv_odd_sinh, AEMeasurable.csinh, sinh_add_cosh, fderivWithin_ccosh, two_sinh, analyticOn_sinh, DifferentiableOn.csinh, sinh_three_mul, HasDerivWithinAt.csinh, cosh_sq_sub_sinh_sq, HasDerivAt.csinh, hasStrictDerivAt_sinh, HasFDerivWithinAt.csinh, ofReal_sinh_ofReal_re, deriv_ccosh, sinh_zero, HasDerivAt.ccosh, continuous_sinh, HasStrictDerivAt.csinh, sinh_sq, hasDerivAt_sinh, sinh_neg, isEquivalent_sinh, tanh_eq_sinh_div_cosh, Measurable.csinh, HasDerivWithinAt.ccosh, cosh_sq, derivWithin_ccosh, HasFDerivAt.ccosh, sinh_two_mul, cosh_two_mul, cosh_sub, sinh_ofReal_re, iteratedDeriv_add_one_sinh, sinh_add, DifferentiableWithinAt.csinh, analyticAt_sinh, deriv_cosh, Polynomial.Chebyshev.U_complex_cosh, analyticWithinAt_sinh, hasDerivAt_cosh, contDiff_sinh, cos_add_mul_I, exp_sub_cosh, Differentiable.csinh, hasStrictDerivAt_cosh, measurable_sinh, Polynomial.Chebyshev.S_two_mul_complex_cosh, sin_eq, sinh_ofReal_im, sinh_eq_tsum, ofReal_sinh, exp_sub_sinh, cos_eq, fderiv_ccosh, sin_mul_I, sin_add_mul_I, HasStrictDerivAt.ccosh, cosh_add, differentiable_sinh, iteratedDeriv_even_sinh, differentiable_iteratedDeriv_sinh, differentiableAt_sinh, ContDiffAt.csinh, iteratedDeriv_add_one_cosh, ContDiff.csinh, deriv_sinh, derivWithin_csinh, hasSum_sinh, fderiv_csinh, ContDiffWithinAt.csinh, HasFDerivAt.csinh, sinh_sub, HasStrictFDerivAt.ccosh, iteratedDeriv_odd_cosh, sinh_mul_I, HasStrictFDerivAt.csinh, ContDiffOn.csinh, analyticOnNhd_sinh, sinh_sub_cosh, cosh_sub_sinh, cosh_add_sinh
|
tan π | CompOp | 57 mathmath: one_add_tan_sq_mul_cos_sq_eq_one, tan_add_mul_I, tan_nat_mul_pi_sub, tan_pi_sub, hasStrictDerivAt_tan, tan_pi_div_two_sub, tan_int_mul_pi, tan_eq, cot_inv_eq_tan, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, tan_nat_mul_pi, tan_eq_zero_of_cos_eq_zero, tan_eq_zero_iff', tan_ofReal_re, tan_neg, tan_int_mul_pi_div_two, tan_ofReal_im, tan_sub', tan_add, tendsto_norm_tan_atTop, tan_add', tan_sub_int_mul_pi, differentiableAt_tan, tan_sub, tan_zero, arctan_tan, tan_mul_cos, tan_sub_nat_mul_pi, tan_eq_sin_div_cos, tan_sub_pi, tan_add_pi, continuousOn_tan, ofReal_tan_ofReal_re, contDiffAt_tan, deriv_tan, tan_int_mul_pi_sub, tendsto_norm_tan_of_cos_eq_zero, tanh_mul_I, tan_arctan, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, tan_add_int_mul_pi, tan_add_nat_mul_pi, tan_eq_zero_iff, continuous_tan, hasDerivAt_tan, tan_sq_div_one_add_tan_sq, isAlgebraic_tan_rat_mul_pi, logDeriv_cos, tan_mul_I, inv_one_add_tan_sq, tan_conj, tan_periodic, tan_inv_eq_cot, continuousAt_tan, tan_two_mul, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, ofReal_tan
|
tanh π | CompOp | 13 mathmath: tan_add_mul_I, tan_eq, ofReal_tanh, tanh_neg, tanh_eq_sinh_div_cosh, tanh_conj, tanh_ofReal_re, tanh_ofReal_im, tanh_mul_I, tanh_zero, tan_mul_I, logDeriv_cosh, ofReal_tanh_ofReal_re
|
| Name | Category | Theorems |
cos π | CompOp | 318 mathmath: cos_add_nat_mul_pi, InnerProductGeometry.cos_angle_add_of_inner_eq_zero, Polynomial.Chebyshev.isExtrOn_T_real_iff, cos_pi_div_five, iteratedDerivWithin_cos_Ioo, EulerSine.integral_cos_mul_cos_pow, sin_add_sin, ContDiffOn.cos, sin_eq_zero_iff_cos_eq, integral_cos, iteratedDeriv_odd_cos, cos_add_pi, HurwitzZeta.LSeriesHasSum_cos, analyticOn_cos, integral_sin_mul_cosβ, abs_cos_le_one, cos_sub_pi, cos_eq_zero_iff, rpow_eq_nhds_of_neg, mapsTo_cos, mapsTo_cos_Ioo, Complex.exp_re, one_add_mul_le_cos, cos_int_mul_two_pi, Complex.cos_ofReal_re, selfAdjoint.norm_sq_expUnitary_sub_one, tendsto_cos_pi_div_two, hasDerivAt_sin, Angle.cos_eq_real_cos_iff_eq_or_eq_neg, InnerProductGeometry.norm_div_cos_angle_sub_of_inner_eq_zero, Polynomial.Chebyshev.eval_T_real_eq_neg_one_iff, integral_sin_pow_three, cos_le_one_div_sqrt_sq_add_one, one_sub_sq_div_two_le_cos, analyticAt_cos, cos_add_int_mul_two_pi, cos_neg_of_pi_div_two_lt_of_lt, HasDerivWithinAt.sin, Polynomial.Chebyshev.isLocalMin_T_real, iteratedDerivWithin_cos_Icc, cos_arcsin, Polynomial.Chebyshev.integral_measureT_eq_integral_cos_of_continuous, Polynomial.isRoot_cos_pi_div_five, integral_cos_pow, cos_nat_mul_two_pi_sub_pi, sin_sub_pi_div_two, cos_add_two_pi, isIntegral_two_mul_cos_rat_mul_pi, EulerSine.integral_cos_mul_cos_pow_aux, antitoneOn_cos, cos_two_neg, cos_nat_mul_pi, fderivWithin_sin, continuous_tan, integral_sin_sq, ContDiff.cos, Polynomial.Chebyshev.T_real_cos, cos_pi_div_four, HasDerivWithinAt.cos, range_cos, cos_add_cos, sin_sub, cos_three_mul, cos_two_pi, integral_cos_pow_aux, hasSum_cos, cos_pi_div_sixteen, one_add_tan_sq_mul_cos_sq_eq_one, cos_two_pi_sub, sin_sq, inv_one_add_tan_sq, EuclideanGeometry.dist_sq_eq_dist_sq_add_dist_sq_sub_two_mul_dist_mul_dist_mul_cos_angle, Complex.norm_mul_cos_arg, measurable_cos, HurwitzZeta.hasSum_nat_completedCosZeta, cos_le_one_sub_mul_cos_sq, cosPartialEquiv_apply, differentiable_cos, Complex.exp_ofReal_mul_I_re, InnerProductGeometry.cos_angle, cot_eq_cos_div_sin, cos_one_le, cos_nonpos_of_pi_div_two_le_of_le, Polynomial.Chebyshev.isLocalMax_T_real, tendsto_cos_neg_pi_div_two, cos_nonneg_of_mem_Icc, Polynomial.Chebyshev.S_two_mul_real_cos, InnerProductGeometry.cos_angle_mul_norm_mul_norm, HasStrictDerivAt.sin, Complex.cpow_ofReal_re, sq_cos_pi_div_six, abs_cos_int_mul_pi, abs_iteratedDeriv_cos_le_one, intervalIntegral.intervalIntegrable_cos, EulerSine.sin_pi_mul_eq, fderivWithin_cos, differentiableAt_cos, sin_pi_div_two_sub, integral_sin_pow_mul_cos_pow_odd, isAlgebraic_cos_rat_mul_pi, cos_pi_div_two, rpow_def_of_neg, hasDerivAt_tan, deriv_tan_sub_id, HasDerivAt.cos, EuclideanGeometry.cos_oangle_eq_cos_angle, iteratedDeriv_add_one_cos, cos_int_mul_pi_sub, sin_sq_eq_half_sub, sin_add, Measurable.cos, continuousOn_cos, cos_pi_div_eight, Quaternion.exp_of_re_eq_zero, HurwitzZeta.hasSum_nat_cosZeta, integral_sin_mul_cosβ, cos_eq_tsum, InnerProductGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, Quaternion.re_exp, integral_sin_pow_aux, hasSum_one_div_nat_pow_mul_cos, cos_eq_cos_iff, derivWithin_cos, integral_sin_pow_even_mul_cos_pow_even, InnerProductGeometry.cos_eq_neg_one_iff_angle_eq_pi, sin_two_mul, cos_int_mul_two_pi_add_pi, hasDerivAt_cos, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, fderiv_cos, InnerProductGeometry.cos_angle_sub_of_inner_eq_zero, polarCoord_symm_apply, abs_sin_half, two_mul_cos_mul_cos, abs_sin_eq_sqrt_one_sub_cos_sq, Angle.cos_eq_iff_coe_eq_or_eq_neg, cos_add, cos_arcsin_nonneg, cos_one_pos, cos_pi_sub, cos_pi_div_six, sin_half_eq_neg_sqrt, differentiable_iteratedDeriv_cos, cos_eq_one_iff_of_lt_of_lt, Polynomial.Chebyshev.rootMultiplicity_T_real, DifferentiableOn.cos, Polynomial.Chebyshev.U_real_cos, sin_add_pi_div_two, contDiff_cos, cos_sub_nat_mul_two_pi, iteratedDeriv_even_cos, EuclideanGeometry.cos_angle_of_angle_eq_pi_div_two, EuclideanGeometry.cos_eq_neg_one_iff_angle_eq_pi, one_sub_mul_le_cos, Polynomial.Chebyshev.isMinOn_T_real, integral_cos_pow_three, abs_cos_sub_cos_le, Polynomial.Chebyshev.isLocalExtr_T_real_iff, analyticWithinAt_cos, bijOn_cos, cos_sq', cos_pos_of_mem_Ioo, Orientation.cos_oangle_eq_cos_angle, derivWithin_sin, cos_sub_int_mul_pi, InnerProductGeometry.cos_angle_add_mul_norm_of_inner_eq_zero, cos_pi_div_thirty_two, neg_one_le_cos, Polynomial.Chebyshev.isMaxOn_T_real, HasStrictFDerivAt.cos, ContDiffWithinAt.cos, deriv_cos, cos_nat_mul_pi_sub, Polynomial.Chebyshev.rootMultiplicity_U_real, continuous_cos, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, EuclideanGeometry.cos_angle_mul_dist_of_angle_eq_pi_div_two, EulerSine.integral_cos_pow_eq, cos_arccos, HasFDerivAt.sin, integral_sin, sin_sq_add_cos_sq, Angle.cos_coe, Angle.cos_toReal, ContinuousLinearMap.rotation_apply, sin_sub_sin, EuclideanGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, cos_sq_le_one, intervalIntegrable_log_cos, integral_sin_pow_odd_mul_cos_pow, EulerSine.tendsto_integral_cos_pow_mul_div, cos_lt_cos_of_nonneg_of_le_pi_div_two, cos_sq_add_sin_sq, cos_sub_cos, cos_nat_mul_two_pi_sub, cos_pi_over_two_pow, cos_eq_zero_iff_sin_eq, abs_cos_eq_sqrt_one_sub_sin_sq, hasStrictDerivAt_cos, cos_half, cos_neg, arccos_cos, integral_sin_mul_cos_sq, iteratedDeriv_add_one_sin, surjOn_cos, quadratic_root_cos_pi_div_five, cos_antiperiodic, cos_periodic, analyticOnNhd_cos, one_sub_sq_div_two_lt_cos, HasFDerivAt.cos, cos_sub_nat_mul_pi, EuclideanGeometry.dist_div_cos_angle_of_angle_eq_pi_div_two, Polynomial.Chebyshev.roots_T_real, deriv_cos, Complex.ofReal_cos, cos_lt_one_div_sqrt_sq_add_one, hasStrictDerivAt_sin, DifferentiableAt.cos, cos_add_pi_div_two, cos_sub_two_pi, cos_two_mul, tan_mul_cos, cos_int_mul_two_pi_sub_pi, deriv_cos', continuousOn_tan, hasDerivAt_tan_of_mem_Ioo, Polynomial.Chebyshev.eval_T_real_eq_one_iff, integral_sin_sq_mul_cos, lipschitzWith_cos, cos_eq_one_iff, EulerSine.integral_cos_pow_pos, cos_nonneg_of_neg_pi_div_two_le_of_le, cos_nat_mul_two_pi_add_pi, InnerProductGeometry.cos_eq_one_iff_angle_eq_zero, cos_sub_int_mul_two_pi, iteratedDeriv_odd_sin, EuclideanGeometry.law_cos, irrational_cos_rat_mul_pi, HasStrictFDerivAt.sin, strictAntiOn_cos, Complex.norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, cos_lt_cos_of_nonneg_of_le_pi, Complex.polarCoord_symm_apply, cos_sq, cos_int_mul_two_pi_sub, ContDiffAt.cos, hasStrictDerivAt_tan, rpow_def_of_nonpos, InnerProductGeometry.norm_sub_sq_eq_norm_sq_add_norm_sq_sub_two_mul_norm_mul_norm_mul_cos_angle, Polynomial.Chebyshev.isLocalExtr_T_real, deriv_sin, Polynomial.Chebyshev.isExtrOn_T_real, integral_sin_pow, HasStrictDerivAt.cos, InnerProductGeometry.cos_angle_sub_mul_norm_of_inner_eq_zero, cos_arctan_pos, cos_add_nat_mul_two_pi, integral_sin_sq_mul_cos_sq, InnerProductGeometry.inner_eq_cos_angle_of_norm_eq_one, isIntegral_two_mul_cos_rat_mul_pi, cos_eq_neg_one_iff, abs_cos_eq_one_iff, cos_sub, integral_cos_sq, cos_eq_sqrt_one_sub_sin_sq, cos_pi_div_three, cos_zero, EuclideanGeometry.cos_eq_one_iff_angle_eq_zero, AEMeasurable.cos, logDeriv_cos, cos_add_int_mul_pi, HasDerivAt.sin, cos_sub_pi_div_two, strictConcaveOn_cos_Icc, HasFDerivWithinAt.cos, integral_cos_sq_sub_sin_sq, deriv_sin, injOn_cos, HurwitzZeta.hasSum_nat_cosKernelβ, cos_nat_mul_two_pi, cos_le_cos_of_nonneg_of_le_pi, cos_sq_arctan, Polynomial.Chebyshev.roots_U_real_nodup, cos_pi, cos_pos_of_le_one, deriv_tan, cos_int_mul_pi, Polynomial.Chebyshev.roots_T_real_nodup, cos_pi_div_two_sub, Differentiable.cos, cos_mem_Icc, sin_half_eq_sqrt, sin_eq_sqrt_one_sub_cos_sq, two_mul_sin_mul_sin, range_cos_infinite, cos_two_mul', Polynomial.Chebyshev.C_two_mul_real_cos, unitary.two_mul_one_sub_cos_norm_argSelfAdjoint, Polynomial.Chebyshev.roots_U_real, HasFDerivWithinAt.sin, cos_le_one, fderiv_sin, Complex.cos_arg, EulerSine.integral_cos_mul_cos_pow_even, Quaternion.exp_eq, cos_bound, cos_abs, Polynomial.Chebyshev.abs_eval_T_real_eq_one_iff, tan_eq_sin_div_cos, two_mul_sin_mul_cos, Complex.cpow_ofReal, Polynomial.Chebyshev.eval_T_real_cos_int_mul_pi_div, DifferentiableWithinAt.cos, cos_arctan, exists_cos_eq_zero, InnerProductGeometry.norm_div_cos_angle_add_of_inner_eq_zero, Unitary.two_mul_one_sub_cos_norm_argSelfAdjoint
|
cosh π | CompOp | 108 mathmath: one_le_cosh, exp_sub_sinh, sinh_add, HasDerivWithinAt.cosh, Differentiable.cosh, analyticOn_cosh, ContDiffOn.cosh, cosh_abs, iteratedDeriv_even_cosh, ContDiffWithinAt.cosh, derivWithin_cosh, fderivWithin_sinh, hasStrictDerivAt_sinh, cosh_surjOn, hasSum_cosh, tanh_eq_sinh_div_cosh, deriv_sinh, cosh_arcosh, UpperHalfPlane.center_im, analyticOnNhd_cosh, continuous_cosh, UpperHalfPlane.cosh_dist, UpperHalfPlane.dist_coe_center, iteratedDeriv_add_one_cosh, iteratedDeriv_add_one_sinh, HasDerivAt.cosh, hasStrictDerivAt_cosh, HasStrictDerivAt.cosh, ContDiffAt.cosh, cosh_sq, UpperHalfPlane.dist_self_center, Polynomial.Chebyshev.S_two_mul_real_cosh, exp_mul_le_cosh_add_mul_sinh, HasDerivAt.sinh, sinh_sq, sinh_sub, exp_sub_cosh, iteratedDeriv_odd_sinh, measurable_cosh, cosh_zero, differentiableAt_cosh, Measurable.cosh, deriv_sinh, DifferentiableAt.cosh, HasFDerivWithinAt.sinh, cosh_pos, sinh_two_mul, cosh_le_exp_half_sq, cosh_add_sinh, DifferentiableWithinAt.cosh, cosh_bijOn, HasFDerivAt.sinh, differentiable_cosh, HasDerivWithinAt.sinh, one_lt_cosh, cosh_lt_cosh, cosh_sub, sinh_sub_cosh, iteratedDeriv_odd_cosh, hasDerivAt_cosh, cosh_le_cosh, fderiv_sinh, UpperHalfPlane.cosh_half_dist, Polynomial.Chebyshev.T_real_cosh, arcosh_cosh, cosh_strictMonoOn, cosh_arsinh, cosh_three_mul, DifferentiableOn.cosh, contDiff_cosh, differentiable_iteratedDeriv_cosh, analyticAt_cosh, sinh_lt_cosh, cosh_sq', cosh_log, Polynomial.Chebyshev.U_real_cosh, iteratedDerivWithin_cosh_Icc, HasStrictDerivAt.sinh, cosh_sub_sinh, sinh_add_cosh, fderivWithin_cosh, cosh_injOn, UpperHalfPlane.dist_coe_center_sq, iteratedDerivWithin_cosh_Ioo, Complex.ofReal_cosh, cosh_eq, UpperHalfPlane.cosh_dist', HasStrictFDerivAt.cosh, cosh_sq_sub_sinh_sq, analyticWithinAt_cosh, fderiv_cosh, HasStrictFDerivAt.sinh, cosh_eq_tsum, HasFDerivAt.cosh, derivWithin_sinh, Complex.cosh_ofReal_re, cosh_add, logDeriv_cosh, hasDerivAt_sinh, cosh_neg, deriv_cosh, cosh_two_mul, cosh_artanh, AEMeasurable.cosh, deriv_cosh, ContDiff.cosh, HasFDerivWithinAt.cosh, Polynomial.Chebyshev.C_two_mul_real_cosh
|
cot π | CompOp | 5 mathmath: tan_inv_eq_cot, Complex.ofReal_cot, cot_eq_cos_div_sin, logDeriv_sin, cot_inv_eq_tan
|
sin π | CompOp | 310 mathmath: range_sin, sin_add_sin, sin_le_sin_of_le_of_le_pi_div_two, sin_arctan, sin_eq_zero_iff_cos_eq, integral_cos, iteratedDeriv_odd_cos, sin_pi_div_two, sin_add_two_pi, integral_sin_mul_cosβ, analyticOnNhd_sin, sin_periodic, lt_sin, EuclideanGeometry.law_sin, InnerProductGeometry.sin_angle, range_sin_infinite, sin_arctan_nonneg, isIntegral_two_mul_sin_rat_mul_pi, hasDerivAt_sin, integral_log_sin_zero_pi_div_two, sin_two_pi, integral_sin_pow_three, sin_lt, sin_le_one, abs_sin_eq_sin_abs_of_abs_le_pi, sin_pi_sub, sin_pi, sinc_eq_dslope, integral_sin_pow_pos, sin_arcsin, sin_pi_div_three, HasDerivWithinAt.sin, InnerProductGeometry.sin_angle_div_norm_eq_sin_angle_div_norm, sin_add_int_mul_pi, integral_cos_pow, sin_antiperiodic, sin_sub_pi_div_two, HurwitzZeta.hasSum_nat_sinZeta, sin_gt_sub_cube, EulerSine.integral_cos_mul_cos_pow_aux, sin_add_nat_mul_pi, sin_lt_sin_of_lt_of_le_pi_div_two, fderivWithin_sin, Affine.Triangle.dist_div_sin_angle_eq_two_mul_circumradius, integral_sin_sq, HasDerivWithinAt.cos, InnerProductGeometry.sin_angle_mul_norm_eq_sin_angle_mul_norm, sin_sq_arctan, sin_pos_of_pos_of_le_two, Gamma_mul_Gamma_one_sub, sin_sub, mul_le_sin, integral_cos_pow_aux, intervalIntegral.intervalIntegrable_sin, InnerProductGeometry.sin_angle_nonneg, Complex.norm_exp_I_mul_ofReal_sub_one, InnerProductGeometry.sin_eq_one_iff_angle_eq_pi_div_two, sin_sq, InnerProductGeometry.norm_toLp_symm_crossProduct, sin_arcsin', tan_div_sqrt_one_add_tan_sq, cot_eq_cos_div_sin, analyticAt_sin, Differentiable.sin, Polynomial.Chebyshev.S_two_mul_real_cos, HasStrictDerivAt.sin, sin_nonneg_of_nonneg_of_le_pi, InnerProductGeometry.sin_angle_sub_of_inner_eq_zero, tendsto_sin_neg_pi_div_two, le_arcsin_iff_sin_le', ContDiff.sin, sin_zero, HurwitzZeta.hasSum_nat_sinKernel, isEquivalent_sin, sin_nat_mul_two_pi_sub, fderivWithin_cos, sin_pi_div_two_sub, InnerProductGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, integral_sin_pow_mul_cos_pow_odd, EuclideanGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, Angle.sin_eq_iff_coe_eq_or_add_eq_pi, HasDerivAt.cos, iteratedDeriv_add_one_cos, sin_eq_tsum, sin_arctan_pos, sin_sq_eq_half_sub, sin_add, sin_neg, integral_exp_mul_I_eq_sin, tan_sq_div_one_add_tan_sq, Quaternion.exp_of_re_eq_zero, arcsin_lt_iff_lt_sin, lipschitzWith_sin, integral_sin_mul_cosβ, continuous_sin, arcsin_le_iff_le_sin', integral_sin_pow_aux, Wallis.W_eq_integral_sin_pow_div_integral_sin_pow, DifferentiableWithinAt.sin, sin_nat_mul_pi, abs_sin_sub_sin_le, hasStrictDerivAt_const_rpow_of_neg, derivWithin_cos, EuclideanGeometry.sin_eq_one_iff_angle_eq_pi_div_two, integral_sin_pow_even_mul_cos_pow_even, sin_two_pi_sub, EuclideanGeometry.sin_angle_div_dist_eq_sin_angle_div_dist, sinOrderIso_apply, AEMeasurable.sin, sin_two_mul, InnerProductGeometry.norm_ofLp_crossProduct, iteratedDerivWithin_sin_Icc, sin_pos_of_pos_of_lt_pi, Complex.exp_ofReal_mul_I_im, hasDerivAt_cos, sin_eq_sin_iff, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, fderiv_cos, InnerProductGeometry.norm_div_sin_angle_add_of_inner_eq_zero, polarCoord_symm_apply, sin_nonneg_of_mem_Icc, EuclideanGeometry.dist_div_sin_angle_of_angle_eq_pi_div_two, abs_sin_half, abs_sin_eq_sqrt_one_sub_cos_sq, cos_add, ContDiffOn.sin, sin_nonpos_of_nonpos_of_neg_pi_le, contDiff_sin, sin_int_mul_two_pi_sub, sin_half_eq_neg_sqrt, InnerProductGeometry.sin_angle_sub_mul_norm_of_inner_eq_zero, sin_int_mul_pi_sub, Polynomial.Chebyshev.U_real_cos, sin_add_pi_div_two, EuclideanGeometry.sin_angle_of_angle_eq_pi_div_two, Complex.sin_ofReal_re, continuousOn_sin, EuclideanGeometry.collinear_iff_eq_or_eq_or_sin_eq_zero, lt_arcsin_iff_sin_lt, HurwitzZeta.hasSum_nat_completedSinZeta, integral_cos_pow_three, lt_arcsin_iff_sin_lt', Quaternion.im_exp, sin_pi_over_two_pow_succ, bijOn_sin, EuclideanGeometry.sin_angle_mul_dist_eq_sin_angle_mul_dist, cos_sq', differentiable_sin, mul_abs_le_abs_sin, InnerProductGeometry.norm_div_sin_angle_sub_of_inner_eq_zero, derivWithin_sin, integral_log_sin_zero_pi, sin_div_le_inv_abs, sin_sub_int_mul_pi, EuclideanGeometry.dist_eq_dist_mul_sin_angle_div_sin_angle, abs_sin_lt_abs, DifferentiableAt.sin, sin_sq_le_sq, sin_sq_le_one, HasStrictFDerivAt.cos, Angle.sin_coe, deriv_cos, le_sin, sin_bound, surjOn_sin, sin_pi_div_thirty_two, sin_pi_div_six, EulerSine.integral_cos_pow_eq, analyticOn_sin, sin_sub_pi, HasFDerivAt.sin, integral_sin, sin_sq_add_cos_sq, EuclideanGeometry.sin_angle_mul_dist_of_angle_eq_pi_div_two, sin_arctan_eq_zero, injOn_sin, ContinuousLinearMap.rotation_apply, sin_sub_sin, lt_sin_mul, integral_sin_pow_odd_mul_cos_pow, cos_sq_add_sin_sq, cos_sub_cos, arcsin_sin, sin_arccos, cos_eq_zero_iff_sin_eq, abs_cos_eq_sqrt_one_sub_sin_sq, hasStrictDerivAt_cos, mapsTo_sin, isAlgebraic_sin_rat_mul_pi, integral_sin_mul_cos_sq, iteratedDeriv_add_one_sin, differentiable_iteratedDeriv_sin, iteratedDeriv_even_sin, HasFDerivAt.cos, arcsin_lt_iff_lt_sin', sin_three_mul, le_arcsin_iff_sin_le, sin_add_nat_mul_two_pi, hasSum_one_div_nat_pow_mul_sin, mul_lt_sin, neg_one_le_sin, deriv_cos, abs_sin_eq_one_iff, mapsTo_sin_Ioo, sin_pos_of_mem_Ioo, abs_iteratedDeriv_sin_le_one, sin_arctan_strictMono, Complex.cpow_ofReal_im, sin_eq_neg_one_iff, sin_pi_div_sixteen, hasStrictDerivAt_sin, cos_add_pi_div_two, integral_sin_pow_succ_le, tan_mul_cos, logDeriv_sin, DifferentiableOn.sin, deriv_cos', sin_sub_nat_mul_pi, strictConcaveOn_sin_Icc, InnerProductGeometry.sin_angle_add_of_inner_eq_zero, sin_sq_lt_sq, integral_sin_sq_mul_cos, hasSum_sin, measurable_sin, sin_sq_pi_over_two_pow, sq_sin_pi_div_three, abs_sin_le_abs, Complex.ofReal_sin, arcsin_sin', monotoneOn_sin, abs_sin_le_one, analyticWithinAt_sin, sin_nat_mul_pi_sub, Affine.Triangle.dist_div_sin_angle_div_two_eq_circumradius, sin_eq_zero_iff, sinc_of_ne_zero, sin_arctan_le_zero, ContDiffAt.sin, iteratedDeriv_odd_sin, sinc_apply, integral_sin_pow_odd, HasStrictFDerivAt.sin, Complex.polarCoord_symm_apply, Measurable.sin, arcsin_eq_iff_eq_sin, sin_neg_of_neg_of_neg_pi_lt, tendsto_euler_sin_prod, sin_pi_div_eight, deriv_sin, tendsto_sin_pi_div_two, integral_sin_pow, strictMonoOn_sin, HasStrictDerivAt.cos, integral_sin_sq_mul_cos_sq, sin_sub_two_pi, cos_sub, integral_cos_sq, HurwitzZeta.LSeriesHasSum_sin, cos_eq_sqrt_one_sub_sin_sq, hasStrictFDerivAt_rpow_of_neg, arcsin_le_iff_le_sin, le_sin_mul, ContDiffWithinAt.sin, EuclideanGeometry.sin_pos_of_not_collinear, sin_add_pi, sin_le, HasDerivAt.sin, Angle.sin_eq_real_sin_iff_eq_or_add_eq_pi, sin_sub_int_mul_two_pi, differentiableAt_sin, InnerProductGeometry.sin_angle_add, cos_sub_pi_div_two, HasFDerivWithinAt.cos, integral_cos_sq_sub_sin_sq, InnerProductGeometry.sin_angle_add_mul_norm_of_inner_eq_zero, deriv_sin, sin_eq_one_iff, sin_mem_Icc, sin_add_int_mul_two_pi, Angle.sin_toReal, sin_pos_of_pos_of_le_one, cos_pi_div_two_sub, InnerProductGeometry.sin_angle_mul_norm_mul_norm, integral_sin_pow_antitone, intervalIntegrable_log_sin, sin_half_eq_sqrt, sin_eq_sqrt_one_sub_cos_sq, two_mul_sin_mul_sin, sin_le_mul, cos_two_mul', sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, Complex.sin_arg, Complex.exp_im, HasFDerivWithinAt.sin, fderiv_sin, integral_sin_pow_even, Quaternion.exp_eq, hasSum_L_function_mod_four_eval_three, sin_int_mul_pi, tan_eq_sin_div_cos, iteratedDerivWithin_sin_Ioo, two_mul_sin_mul_cos, Complex.cpow_ofReal, coe_sinOrderIso_apply, sin_eq_zero_iff_of_lt_of_lt, sin_pi_div_four, sin_arctan_lt_zero, Complex.norm_mul_sin_arg, sin_sq_pi_over_two_pow_succ, sin_sub_nat_mul_two_pi
|
sinh π | CompOp | 128 mathmath: sinh_eq, sinh_log, exp_sub_sinh, sinh_add, measurable_sinh, HasDerivWithinAt.cosh, UpperHalfPlane.image_coe_sphere, sinh_nonneg_iff, sinh_surjective, differentiable_sinh, UpperHalfPlane.dist_le_iff_dist_coe_center_le, derivWithin_cosh, fderivWithin_sinh, hasStrictDerivAt_sinh, analyticWithinAt_sinh, abs_sinh, sinh_zero, hasSum_sinh, sinh_arcosh, analyticAt_sinh, tanh_eq_sinh_div_cosh, UpperHalfPlane.dist_eq_iff_eq_sinh, Differentiable.sinh, sinh_inj, ContDiffAt.sinh, deriv_sinh, UpperHalfPlane.dist_eq_iff_eq_sq_sinh, UpperHalfPlane.image_coe_ball, sinh_sub_id_strictMono, UpperHalfPlane.image_coe_closedBall, self_lt_sinh_iff, UpperHalfPlane.dist_coe_center, iteratedDeriv_add_one_cosh, sinh_lt_self_iff, iteratedDeriv_add_one_sinh, HasDerivAt.cosh, UpperHalfPlane.lt_dist_iff_lt_dist_coe_center, sinh_arsinh, Measurable.sinh, hasStrictDerivAt_cosh, HasStrictDerivAt.cosh, sinhEquiv_apply, UpperHalfPlane.dist_lt_iff_dist_coe_center_lt, cosh_sq, sinh_eq_tsum, sinh_neg, iteratedDerivWithin_sinh_Icc, sinh_eq_zero, Polynomial.Chebyshev.S_two_mul_real_cosh, exp_mul_le_cosh_add_mul_sinh, HasDerivAt.sinh, sinh_sq, sinh_sub, exp_sub_cosh, ContDiffWithinAt.sinh, iteratedDeriv_odd_sinh, DifferentiableOn.sinh, deriv_sinh, HasFDerivWithinAt.sinh, continuous_sinh, UpperHalfPlane.dist_eq_iff_dist_coe_center_eq, UpperHalfPlane.cmp_dist_eq_cmp_dist_coe_center, Complex.sinh_ofReal_re, sinh_two_mul, sinhOrderIso_apply, cosh_add_sinh, self_le_sinh_iff, HasFDerivAt.sinh, UpperHalfPlane.le_dist_iff_le_dist_coe_center, sinh_lt_sinh, HasDerivWithinAt.sinh, UpperHalfPlane.dist_center_dist, cosh_sub, sinh_sub_cosh, iteratedDeriv_odd_cosh, hasDerivAt_cosh, iteratedDerivWithin_sinh_Ioo, iteratedDeriv_even_sinh, contDiff_sinh, fderiv_sinh, Complex.ofReal_sinh, AEMeasurable.sinh, UpperHalfPlane.sinh_half_dist_add_dist, sinh_neg_iff, sinh_lt_cosh, cosh_sq', Polynomial.Chebyshev.U_real_cosh, sinh_strictMono, HasStrictDerivAt.sinh, cosh_sub_sinh, DifferentiableAt.sinh, sinh_add_cosh, sinh_injective, analyticOn_sinh, differentiableAt_sinh, differentiable_iteratedDeriv_sinh, fderivWithin_cosh, ContDiff.sinh, UpperHalfPlane.sinh_half_dist, UpperHalfPlane.dist_le_iff_le_sinh, sinh_pos_iff, arsinh_sinh, UpperHalfPlane.dist_coe_center_sq, sinh_le_sinh, HasStrictFDerivAt.cosh, analyticOnNhd_sinh, cosh_sq_sub_sinh_sq, fderiv_cosh, HasStrictFDerivAt.sinh, sinh_three_mul, HasFDerivAt.cosh, derivWithin_sinh, cosh_add, hasDerivAt_sinh, deriv_cosh, DifferentiableWithinAt.sinh, sinh_nonpos_iff, cosh_two_mul, sinh_artanh, Mathlib.Meta.Positivity.sinh_pos_of_pos, deriv_cosh, sinh_bijective, sinhHomeomorph_apply, Mathlib.Meta.Positivity.sinh_nonneg_of_nonneg, ContDiffOn.sinh, HasFDerivWithinAt.cosh, isEquivalent_sinh, sinh_le_self_iff
|
tan π | CompOp | 91 mathmath: tan_pi_div_four, tan_pi_sub, tan_nonpos_of_nonpos_of_neg_pi_div_two_le, tan_inv_eq_cot, tan_int_mul_pi, le_tan, continuousAt_tan, tan_sub', contDiffAt_tan, InnerProductGeometry.tan_angle_sub_mul_norm_of_inner_eq_zero, tan_arccos, tan_int_mul_pi_div_two, Complex.tan_arg, InnerProductGeometry.tan_angle_add_mul_norm_of_inner_eq_zero, tan_neg, continuous_tan, tan_neg_of_neg_of_pi_div_two_lt, tan_nat_mul_pi_sub, Complex.tan_ofReal_re, tan_two_mul, one_add_tan_sq_mul_cos_sq_eq_one, inv_one_add_tan_sq, tan_div_sqrt_one_add_tan_sq, EuclideanGeometry.dist_div_tan_angle_of_angle_eq_pi_div_two, tan_pi_div_two, coe_tanPartialHomeomorph, isAlgebraic_tan_rat_mul_pi, hasDerivAt_tan, tan_add, deriv_tan_sub_id, tan_sub_pi, InnerProductGeometry.norm_div_tan_angle_sub_of_inner_eq_zero, tan_sq_div_one_add_tan_sq, injOn_tan, tan_lt_tan_of_nonneg_of_lt_pi_div_two, tan_lt_tan_of_lt_of_lt_pi_div_two, InnerProductGeometry.norm_div_tan_angle_add_of_inner_eq_zero, InnerProductGeometry.tan_angle_sub_of_inner_eq_zero, tan_pi_div_two_sub, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, InnerProductGeometry.tan_angle_add_of_inner_eq_zero, tan_periodic, lt_tan, tan_nat_mul_pi, tan_add_int_mul_pi, tan_pi_div_six, EuclideanGeometry.tan_angle_of_angle_eq_pi_div_two, tendsto_abs_tan_of_cos_eq_zero, differentiableAt_tan, tan_nonneg_of_nonneg_of_le_pi_div_two, tendsto_tan_pi_div_two, inv_sqrt_one_add_tan_sq, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, image_tan_Ioo, EuclideanGeometry.tan_angle_mul_dist_of_angle_eq_pi_div_two, tan_add', tendsto_tan_neg_pi_div_two, tan_int_mul_pi_sub, differentiableAt_tan_of_mem_Ioo, tan_pi_div_three, tan_eq_zero_iff, tan_mul_cos, continuousOn_tan, hasDerivAt_tan_of_mem_Ioo, tan_surjective, tan_sub_nat_mul_pi, tendsto_abs_tan_atTop, tan_arctan, tan_eq_zero_of_cos_eq_zero, hasStrictDerivAt_tan, tan_add_nat_mul_pi, strictMonoOn_tan, tan_sub, logDeriv_cos, tan_arcsin, surjOn_tan, tan_pi, Angle.tan_toReal, cot_inv_eq_tan, tan_sub_int_mul_pi, deriv_tan, tan_zero, arctan_tan, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, tan_pos_of_pos_of_lt_pi_div_two, tan_eq_zero_iff', tan_eq_sin_div_cos, tan_add_pi, Complex.ofReal_tan, continuousOn_tan_Ioo, Angle.tan_coe
|
tanh π | CompOp | 19 mathmath: abs_tanh_lt_one, Complex.ofReal_tanh, tanh_eq_sinh_div_cosh, tanh_arcosh, neg_one_lt_tanh, Complex.tanh_ofReal_re, tanh_artanh, tanh_lt_one, tanh_eq, tanh_sq_lt_one, UpperHalfPlane.tanh_half_dist, tanh_arsinh, tanh_zero, tanh_injective, logDeriv_cosh, tanh_surjOn, tanh_neg, tanh_bijOn, artanh_tanh
|