Documentation Verification Report

Trigonometric

πŸ“ Source: Mathlib/Analysis/Complex/Trigonometric.lean

Statistics

MetricCount
Definitionscos, cosh, cot, sin, sinh, tan, tanh, evalCosh, cos, cosh, cot, sin, sinh, tan, tanh
15
Theoremscos_add, cos_add_cos, cos_add_mul_I, cos_add_sin_I, cos_add_sin_mul_I_pow, cos_bound, cos_conj, cos_eq, cos_mul_I, cos_neg, cos_ofReal_im, cos_ofReal_re, cos_sq, cos_sq', cos_sq_add_sin_sq, cos_sub, cos_sub_cos, cos_sub_sin_I, cos_three_mul, cos_two_mul, cos_two_mul', cos_zero, cosh_add, cosh_add_sinh, cosh_conj, cosh_mul_I, cosh_neg, cosh_ofReal_im, cosh_ofReal_re, cosh_sq, cosh_sq_sub_sinh_sq, cosh_sub, cosh_sub_sinh, cosh_three_mul, cosh_two_mul, cosh_zero, cot_conj, cot_eq_cos_div_sin, cot_inv_eq_tan, enorm_exp_I_mul_ofReal, enorm_exp_ofReal_mul_I, exp_add_mul_I, exp_eq_exp_re_mul_sin_add_cos, exp_im, exp_mul_I, exp_ofReal_mul_I_im, exp_ofReal_mul_I_re, exp_re, exp_sub_cosh, exp_sub_sinh, inv_one_add_tan_sq, nnnorm_exp_I_mul_ofReal, nnnorm_exp_ofReal_mul_I, norm_cos_add_sin_mul_I, norm_exp, norm_exp_I_mul_ofReal, norm_exp_I_mul_ofReal_sub_one, norm_exp_eq_iff_re_eq, norm_exp_ofReal_mul_I, ofReal_cos, ofReal_cos_ofReal_re, ofReal_cosh, ofReal_cosh_ofReal_re, ofReal_cot, ofReal_cot_ofReal_re, ofReal_sin, ofReal_sin_ofReal_re, ofReal_sinh, ofReal_sinh_ofReal_re, ofReal_tan, ofReal_tan_ofReal_re, ofReal_tanh, ofReal_tanh_ofReal_re, one_add_tan_sq_mul_cos_sq_eq_one, sin_add, sin_add_mul_I, sin_add_sin, sin_bound, sin_conj, sin_eq, sin_mul_I, sin_neg, sin_ofReal_im, sin_ofReal_re, sin_sq, sin_sq_add_cos_sq, sin_sub, sin_sub_sin, sin_three_mul, sin_two_mul, sin_zero, sinh_add, sinh_add_cosh, sinh_conj, sinh_mul_I, sinh_neg, sinh_ofReal_im, sinh_ofReal_re, sinh_sq, sinh_sub, sinh_sub_cosh, sinh_three_mul, sinh_two_mul, sinh_zero, tan_conj, tan_eq_sin_div_cos, tan_inv_eq_cot, tan_mul_I, tan_mul_cos, tan_neg, tan_ofReal_im, tan_ofReal_re, tan_sq_div_one_add_tan_sq, tan_zero, tanh_conj, tanh_eq_sinh_div_cosh, tanh_mul_I, tanh_neg, tanh_ofReal_im, tanh_ofReal_re, tanh_zero, two_cos, two_cosh, two_sin, two_sinh, abs_cos_eq_sqrt_one_sub_sin_sq, abs_cos_le_one, abs_sin_eq_sqrt_one_sub_cos_sq, abs_sin_le_one, abs_tanh_lt_one, cos_abs, cos_add, cos_add_cos, cos_bound, cos_le_one, cos_neg, cos_one_le, cos_one_pos, cos_pos_of_le_one, cos_sq, cos_sq', cos_sq_add_sin_sq, cos_sq_le_one, cos_sub, cos_sub_cos, cos_three_mul, cos_two_mul, cos_two_mul', cos_two_neg, cos_zero, cosh_abs, cosh_add, cosh_add_sinh, cosh_eq, cosh_neg, cosh_pos, cosh_sq, cosh_sq', cosh_sq_sub_sinh_sq, cosh_sub, cosh_sub_sinh, cosh_three_mul, cosh_two_mul, cosh_zero, cot_eq_cos_div_sin, cot_inv_eq_tan, exp_sub_cosh, exp_sub_sinh, inv_one_add_tan_sq, inv_sqrt_one_add_tan_sq, neg_one_le_cos, neg_one_le_sin, neg_one_lt_tanh, one_add_tan_sq_mul_cos_sq_eq_one, sin_add, sin_add_sin, sin_bound, sin_le_one, sin_neg, sin_pos_of_pos_of_le_one, sin_pos_of_pos_of_le_two, sin_sq, sin_sq_add_cos_sq, sin_sq_eq_half_sub, sin_sq_le_one, sin_sub, sin_sub_sin, sin_three_mul, sin_two_mul, sin_zero, sinh_add, sinh_add_cosh, sinh_eq, sinh_lt_cosh, sinh_neg, sinh_sq, sinh_sub, sinh_sub_cosh, sinh_three_mul, sinh_two_mul, sinh_zero, tan_div_sqrt_one_add_tan_sq, tan_eq_sin_div_cos, tan_inv_eq_cot, tan_mul_cos, tan_neg, tan_sq_div_one_add_tan_sq, tan_zero, tanh_eq, tanh_eq_sinh_div_cosh, tanh_lt_one, tanh_neg, tanh_sq_lt_one, tanh_zero, two_mul_cos_mul_cos, two_mul_sin_mul_cos, two_mul_sin_mul_sin
217
Total232

Complex

Definitions

NameCategoryTheorems
cos πŸ“–CompOp
173 mathmath: cos_sub_pi, Polynomial.Chebyshev.S_two_mul_complex_cos, cos_eq_tsum, EulerSine.integral_cos_mul_cos_pow, HasDerivAt.ccos, one_add_tan_sq_mul_cos_sq_eq_one, sin_eq_zero_iff_cos_eq, HasFDerivWithinAt.ccos, cos_three_mul, sin_pi_div_two_sub, HasStrictFDerivAt.csin, cos_mul_I, cos_sub_sin_I, cos_eq_one_iff, exp_add_mul_I, range_cos, cos_ofReal_re, cos_eq_zero_iff, cos_sub, cos_antiperiodic, cos_add_nat_mul_two_pi, hasStrictDerivAt_tan, deriv_cos, norm_cos_add_sin_mul_I, cos_pi_div_two, HasFDerivWithinAt.csin, continuousOn_cos, cos_conj, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, cos_nat_mul_two_pi_sub_pi, ContDiff.ccos, EulerSine.integral_cos_mul_cos_pow_aux, HasStrictDerivAt.csin, Differentiable.ccos, arg_cos_add_sin_mul_I, cos_eq_iff_quadratic, riemannZeta_one_sub, cos_nat_mul_two_pi, sin_two_mul, ofReal_cos_ofReal_re, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, cos_eq_tsum', cos_pi_sub, cos_two_mul, cos_sub_two_pi, sin_sub_pi_div_two, Measurable.ccos, cos_add_sin_mul_I_pow, arg_mul_cos_add_sin_mul_I, DifferentiableOn.ccos, cos_int_mul_two_pi_sub, iteratedDeriv_odd_sin, HurwitzZeta.cosZeta_one_sub, EulerSine.sin_pi_mul_eq, fderivWithin_ccos, ContDiffOn.ccos, HasDerivAt.csin, cos_add_pi, HasStrictFDerivAt.ccos, cos_add_sin_I, ContDiffWithinAt.ccos, HasFDerivAt.ccos, hasDerivAt_cos, cos_sub_nat_mul_two_pi, cos_int_mul_two_pi_add_pi, cos_two_mul', cos_surjective, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, measurable_cos, HurwitzZeta.hurwitzZetaEven_one_sub, deriv_csin, tan_mul_cos, cos_add, norm_mul_cos_add_sin_mul_I, analyticOn_cos, cos_periodic, tan_eq_sin_div_cos, cos_bound, continuousOn_tan, iteratedDeriv_even_cos, iteratedDeriv_add_one_sin, sin_sq_add_cos_sq, fderiv_ccos, cos_add_pi_div_two, hasStrictDerivAt_cos, HasDerivWithinAt.csin, iteratedDeriv_add_one_cos, continuous_cos, hasSum_cos', cos_add_cos, hasStrictDerivAt_sin, derivWithin_ccos, cos_sq_add_sin_sq, cos_sub_pi_div_two, deriv_tan, cos_zero, ContDiffAt.ccos, Polynomial.Chebyshev.T_complex_cos, cos_add_mul_I, cos_int_mul_two_pi_sub_pi, cos_add_two_pi, HasFDerivAt.csin, derivWithin_csin, hasDerivAt_sin, deriv_ccos, sin_add, HasDerivWithinAt.ccos, cos_neg, sin_eq, EulerSine.antideriv_cos_comp_const_mul, fderivWithin_csin, EulerSine.antideriv_sin_comp_const_mul, cot_eq_cos_div_sin, deriv_cos', isIntegral_two_mul_cos_rat_mul_pi, Gammaℝ_one_sub_mul_Gammaℝ_one_add, iteratedDeriv_odd_cos, ofReal_cos, sin_sub, cos_eq, Polynomial.Chebyshev.U_complex_cos, sin_add_sin, Polynomial.Chebyshev.C_two_mul_complex_cos, sin_add_mul_I, cos_pi_div_two_sub, cos_sub_cos, cos_eq_zero_iff_sin_eq, exp_eq_exp_re_mul_sin_add_cos, AEMeasurable.ccos, continuous_tan, deriv_sin, cos_sq, hasDerivAt_tan, Gammaℝ_div_Gammaℝ_one_sub, cos_eq_neg_one_iff, logDeriv_cos, differentiable_iteratedDeriv_cos, sin_sq, differentiable_cos, cos_nat_mul_two_pi_sub, analyticAt_cos, analyticOnNhd_cos, inv_one_add_tan_sq, cos_nat_mul_two_pi_add_pi, inv_Gammaℝ_one_sub, fderiv_csin, exp_mul_I, isAlgebraic_cos_rat_mul_pi, contDiff_cos, arg_mul_cos_add_sin_mul_I_sub, cos_two_pi_sub, DifferentiableAt.ccos, sin_sub_sin, hasSum_cos, cos_ofReal_im, differentiableAt_cos, cos_eq_cos_iff, cos_sq', integral_cos_mul_complex, cosh_mul_I, cos_int_mul_two_pi, cos_two_pi, cos_add_int_mul_two_pi, analyticWithinAt_cos, arg_cos_add_sin_mul_I_eq_toIocMod, DifferentiableWithinAt.ccos, EulerSine.integral_cos_mul_cos_pow_even, HasStrictDerivAt.ccos, cos_pi, cos_sub_int_mul_two_pi, sin_add_pi_div_two, two_cos
cosh πŸ“–CompOp
89 mathmath: HasFDerivWithinAt.ccosh, iteratedDeriv_even_cosh, analyticAt_cosh, cos_mul_I, fderivWithin_csinh, ContDiffOn.ccosh, ofReal_cosh_ofReal_re, deriv_csinh, iteratedDeriv_odd_sinh, cosh_conj, cosh_three_mul, analyticWithinAt_cosh, sinh_add_cosh, fderivWithin_ccosh, contDiff_cosh, analyticOn_cosh, cosh_ofReal_im, HasDerivWithinAt.csinh, cosh_sq_sub_sinh_sq, AEMeasurable.ccosh, continuous_cosh, DifferentiableAt.ccosh, HasDerivAt.csinh, hasStrictDerivAt_sinh, HasFDerivWithinAt.csinh, deriv_ccosh, HasDerivAt.ccosh, HasStrictDerivAt.csinh, Polynomial.Chebyshev.T_complex_cosh, sinh_sq, Polynomial.Chebyshev.C_two_mul_complex_cosh, hasDerivAt_sinh, tanh_eq_sinh_div_cosh, HasDerivWithinAt.ccosh, cosh_zero, cosh_sq, derivWithin_ccosh, HasFDerivAt.ccosh, cosh_eq_tsum, two_cosh, sinh_two_mul, cosh_two_mul, ContDiff.ccosh, cosh_sub, ContDiffAt.ccosh, iteratedDeriv_add_one_sinh, sinh_add, ContDiffWithinAt.ccosh, deriv_cosh, Polynomial.Chebyshev.U_complex_cosh, analyticOnNhd_cosh, DifferentiableWithinAt.ccosh, hasDerivAt_cosh, cos_add_mul_I, exp_sub_cosh, hasStrictDerivAt_cosh, Polynomial.Chebyshev.S_two_mul_complex_cosh, sin_eq, differentiableAt_cosh, exp_sub_sinh, Measurable.ccosh, cos_eq, fderiv_ccosh, DifferentiableOn.ccosh, sin_add_mul_I, HasStrictDerivAt.ccosh, measurable_cosh, cosh_add, iteratedDeriv_add_one_cosh, cosh_neg, deriv_sinh, derivWithin_csinh, fderiv_csinh, HasFDerivAt.csinh, differentiable_cosh, sinh_sub, ofReal_cosh, HasStrictFDerivAt.ccosh, iteratedDeriv_odd_cosh, hasSum_cosh, cosh_ofReal_re, HasStrictFDerivAt.csinh, cosh_mul_I, sinh_sub_cosh, Differentiable.ccosh, cosh_sub_sinh, logDeriv_cosh, cosh_add_sinh, differentiable_iteratedDeriv_cosh
cot πŸ“–CompOp
18 mathmath: cot_inv_eq_tan, ofReal_cot, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_div_pow, cot_series_rep', logDeriv_sin_div_eq_cot, logDeriv_sin, ofReal_cot_ofReal_re, cot_pi_eq_exp_ratio, cot_series_rep, iteratedDerivWithin_cot_pi_mul_eq_mul_tsum_zpow, cot_conj, cot_pi_mul_contDiffWithinAt, tendsto_logDeriv_euler_cot_sub, cot_eq_cos_div_sin, iteratedDerivWithin_cot_sub_inv_eq_add_mul_tsum, cot_eq_exp_ratio, tan_inv_eq_cot, pi_mul_cot_pi_q_exp
sin πŸ“–CompOp
161 mathmath: AEMeasurable.csin, Polynomial.Chebyshev.S_two_mul_complex_cos, ContDiffAt.csin, HasDerivAt.ccos, differentiableAt_sin, Measurable.csin, Differentiable.csin, sin_eq_zero_iff_cos_eq, HasFDerivWithinAt.ccos, sin_pi_div_two_sub, HasStrictFDerivAt.csin, cos_sub_sin_I, exp_add_mul_I, analyticOn_sin, cos_sub, HasProdUniformlyOn_sineTerm_prod_on_compact, sin_eq_neg_one_iff, range_sin, continuous_sin, sin_int_mul_pi, sin_eq_zero_iff, ofReal_sin_ofReal_re, deriv_cos, norm_cos_add_sin_mul_I, HasFDerivWithinAt.csin, sin_nat_mul_pi, sin_int_mul_two_pi_sub, sin_bound, EulerSine.integral_cos_mul_cos_pow_aux, HasStrictDerivAt.csin, arg_cos_add_sin_mul_I, sin_sub_nat_mul_two_pi, sin_nat_mul_two_pi_sub, sin_two_mul, analyticAt_sin, arg_mul_cos_add_sin_mul_I_eq_toIocMod, arg_cos_add_sin_mul_I_sub, sin_sub_two_pi, sin_sub_pi_div_two, cos_add_sin_mul_I_pow, arg_mul_cos_add_sin_mul_I, ContDiffOn.csin, continuousOn_sin, differentiable_iteratedDeriv_sin, iteratedDeriv_odd_sin, tendsto_logDeriv_euler_sin_div, logDeriv_sin_div_eq_cot, EulerSine.sin_pi_mul_eq, logDeriv_sin, fderivWithin_ccos, isAlgebraic_sin_rat_mul_pi, HasDerivAt.csin, sin_two_pi, HasStrictFDerivAt.ccos, analyticOnNhd_sin, hasSum_sin, sin_add_two_pi, cos_add_sin_I, sin_eq_sin_iff, HasProdLocallyUniformlyOn_euler_sin_prod, sin_pi_sub, HasFDerivAt.ccos, sin_three_mul, hasDerivAt_cos, cos_two_mul', tendsto_euler_sin_prod, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, sin_conj, isIntegral_two_mul_sin_rat_mul_pi, deriv_csin, DifferentiableWithinAt.csin, tan_mul_cos, sin_antiperiodic, cos_add, norm_mul_cos_add_sin_mul_I, differentiable_sin, sin_eq_one_iff, tan_eq_sin_div_cos, iteratedDeriv_add_one_sin, sin_sq_add_cos_sq, sin_ofReal_re, fderiv_ccos, cos_add_pi_div_two, hasStrictDerivAt_cos, HasDerivWithinAt.csin, iteratedDeriv_add_one_cos, hasStrictDerivAt_sin, derivWithin_ccos, cos_sq_add_sin_sq, sin_pi_div_two, sin_periodic, cos_sub_pi_div_two, ContDiffWithinAt.csin, cos_add_mul_I, HasFDerivAt.csin, derivWithin_csin, hasDerivAt_sin, deriv_ccos, sin_add, HasDerivWithinAt.ccos, sin_eq, EulerSine.antideriv_cos_comp_const_mul, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, fderivWithin_csin, sin_add_int_mul_two_pi, EulerSine.antideriv_sin_comp_const_mul, cot_eq_cos_div_sin, deriv_cos', sin_pi, sin_eq_tsum, measurable_sin, euler_sineTerm_tprod, iteratedDeriv_odd_cos, sin_sub, cos_eq, Polynomial.Chebyshev.U_complex_cos, sin_add_sin, sin_mul_I, sin_sub_pi, sin_add_mul_I, iteratedDeriv_even_sin, cos_pi_div_two_sub, cos_sub_cos, cos_eq_zero_iff_sin_eq, exp_eq_exp_re_mul_sin_add_cos, ofReal_sin, sin_neg, sin_sub_int_mul_two_pi, sin_two_pi_sub, sin_ofReal_im, deriv_sin, analyticWithinAt_sin, tan_sq_div_one_add_tan_sq, sin_zero, hasSum_sin', Gamma_mul_Gamma_one_sub, sin_eq_tsum', sin_surjective, sin_sq, fderiv_csin, exp_mul_I, contDiff_sin, arg_mul_cos_add_sin_mul_I_sub, tendsto_euler_sin_prod', sin_sub_sin, HurwitzZeta.hurwitzZetaOdd_one_sub, sinh_mul_I, sin_add_nat_mul_two_pi, ContDiff.csin, cos_sq', DifferentiableOn.csin, integral_cos_mul_complex, HurwitzZeta.sinZeta_one_sub, inv_Gammaℝ_two_sub, arg_cos_add_sin_mul_I_eq_toIocMod, HasStrictDerivAt.ccos, DifferentiableAt.csin, isEquivalent_sin, sin_add_pi, two_sin, sin_add_pi_div_two
sinh πŸ“–CompOp
87 mathmath: HasFDerivWithinAt.ccosh, sinh_conj, fderivWithin_csinh, deriv_csinh, DifferentiableAt.csinh, iteratedDeriv_odd_sinh, AEMeasurable.csinh, sinh_add_cosh, fderivWithin_ccosh, two_sinh, analyticOn_sinh, DifferentiableOn.csinh, sinh_three_mul, HasDerivWithinAt.csinh, cosh_sq_sub_sinh_sq, HasDerivAt.csinh, hasStrictDerivAt_sinh, HasFDerivWithinAt.csinh, ofReal_sinh_ofReal_re, deriv_ccosh, sinh_zero, HasDerivAt.ccosh, continuous_sinh, HasStrictDerivAt.csinh, sinh_sq, hasDerivAt_sinh, sinh_neg, isEquivalent_sinh, tanh_eq_sinh_div_cosh, Measurable.csinh, HasDerivWithinAt.ccosh, cosh_sq, derivWithin_ccosh, HasFDerivAt.ccosh, sinh_two_mul, cosh_two_mul, cosh_sub, sinh_ofReal_re, iteratedDeriv_add_one_sinh, sinh_add, DifferentiableWithinAt.csinh, analyticAt_sinh, deriv_cosh, Polynomial.Chebyshev.U_complex_cosh, analyticWithinAt_sinh, hasDerivAt_cosh, contDiff_sinh, cos_add_mul_I, exp_sub_cosh, Differentiable.csinh, hasStrictDerivAt_cosh, measurable_sinh, Polynomial.Chebyshev.S_two_mul_complex_cosh, sin_eq, sinh_ofReal_im, sinh_eq_tsum, ofReal_sinh, exp_sub_sinh, cos_eq, fderiv_ccosh, sin_mul_I, sin_add_mul_I, HasStrictDerivAt.ccosh, cosh_add, differentiable_sinh, iteratedDeriv_even_sinh, differentiable_iteratedDeriv_sinh, differentiableAt_sinh, ContDiffAt.csinh, iteratedDeriv_add_one_cosh, ContDiff.csinh, deriv_sinh, derivWithin_csinh, hasSum_sinh, fderiv_csinh, ContDiffWithinAt.csinh, HasFDerivAt.csinh, sinh_sub, HasStrictFDerivAt.ccosh, iteratedDeriv_odd_cosh, sinh_mul_I, HasStrictFDerivAt.csinh, ContDiffOn.csinh, analyticOnNhd_sinh, sinh_sub_cosh, cosh_sub_sinh, cosh_add_sinh
tan πŸ“–CompOp
57 mathmath: one_add_tan_sq_mul_cos_sq_eq_one, tan_add_mul_I, tan_nat_mul_pi_sub, tan_pi_sub, hasStrictDerivAt_tan, tan_pi_div_two_sub, tan_int_mul_pi, tan_eq, cot_inv_eq_tan, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, tan_nat_mul_pi, tan_eq_zero_of_cos_eq_zero, tan_eq_zero_iff', tan_ofReal_re, tan_neg, tan_int_mul_pi_div_two, tan_ofReal_im, tan_sub', tan_add, tendsto_norm_tan_atTop, tan_add', tan_sub_int_mul_pi, differentiableAt_tan, tan_sub, tan_zero, arctan_tan, tan_mul_cos, tan_sub_nat_mul_pi, tan_eq_sin_div_cos, tan_sub_pi, tan_add_pi, continuousOn_tan, ofReal_tan_ofReal_re, contDiffAt_tan, deriv_tan, tan_int_mul_pi_sub, tendsto_norm_tan_of_cos_eq_zero, tanh_mul_I, tan_arctan, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, tan_add_int_mul_pi, tan_add_nat_mul_pi, tan_eq_zero_iff, continuous_tan, hasDerivAt_tan, tan_sq_div_one_add_tan_sq, isAlgebraic_tan_rat_mul_pi, logDeriv_cos, tan_mul_I, inv_one_add_tan_sq, tan_conj, tan_periodic, tan_inv_eq_cot, continuousAt_tan, tan_two_mul, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, ofReal_tan
tanh πŸ“–CompOp
13 mathmath: tan_add_mul_I, tan_eq, ofReal_tanh, tanh_neg, tanh_eq_sinh_div_cosh, tanh_conj, tanh_ofReal_re, tanh_ofReal_im, tanh_mul_I, tanh_zero, tan_mul_I, logDeriv_cosh, ofReal_tanh_ofReal_re

Theorems

NameKindAssumesProvesValidatesDepends On
cos_add πŸ“–mathematicalβ€”cos
Complex
instAdd
instSub
instMul
sin
β€”cosh_mul_I
add_mul
Distrib.rightDistribClass
cosh_add
sinh_mul_I
mul_mul_mul_comm
I_mul_I
mul_neg_one
sub_eq_add_neg
cos_add_cos πŸ“–mathematicalβ€”Complex
instAdd
cos
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
cos_add
cos_sub
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
cos_add_mul_I πŸ“–mathematicalβ€”cos
Complex
instAdd
instMul
I
instSub
cosh
sin
sinh
β€”cos_add
cos_mul_I
sin_mul_I
mul_assoc
cos_add_sin_I πŸ“–mathematicalβ€”Complex
instAdd
cos
instMul
sin
I
exp
β€”cosh_add_sinh
sinh_mul_I
cosh_mul_I
cos_add_sin_mul_I_pow πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instAdd
cos
instMul
sin
I
instNatCast
β€”exp_mul_I
exp_nat_mul
mul_assoc
cos_bound πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
cos
instOne
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instMonoid
Real.instDivInvMonoid
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
neg_mul
Finset.sum_congr
Finset.sum_range_succ
Finset.sum_singleton
pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
instCharZero
pow_one
zero_add
mul_one
div_one
Even.neg_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
le_imp_le_of_le_of_le
norm_add_le
le_refl
norm_div
norm_ofNat
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
exp_bound
norm_neg
norm_mul
norm_I
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
add_le_add_right
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_natSucc
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_factorial
Mathlib.Meta.NormNum.isNNRat_div
add_halves
CharZero.NeZero.two
cos_conj πŸ“–mathematicalβ€”cos
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”cosh_mul_I
conj_neg_I
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
cosh_conj
mul_neg
cosh_neg
cos_eq πŸ“–mathematicalβ€”cos
Complex
instSub
instMul
ofReal
re
cosh
im
sin
sinh
I
β€”re_add_im
cos_add_mul_I
cos_mul_I πŸ“–mathematicalβ€”cos
Complex
instMul
I
cosh
β€”cosh_mul_I
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
I_sq
mul_neg
cosh_neg
cos_neg πŸ“–mathematicalβ€”cos
Complex
instNeg
β€”neg_mul
exp_neg
neg_neg
add_comm
cos_ofReal_im πŸ“–mathematicalβ€”im
cos
ofReal
Real
Real.instZero
β€”ofReal_cos_ofReal_re
ofReal_im
cos_ofReal_re πŸ“–mathematicalβ€”re
cos
ofReal
Real.cos
β€”β€”
cos_sq πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
cos
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
β€”Nat.instAtLeastTwoHAddOfNat
cos_two_mul
add_sub_cancel
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
instCharZero
cos_sq' πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
cos
instSub
instOne
sin
β€”sin_sq_add_cos_sq
add_sub_cancel_left
cos_sq_add_sin_sq πŸ“–mathematicalβ€”Complex
instAdd
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
cos
sin
instOne
β€”add_comm
sin_sq_add_cos_sq
cos_sub πŸ“–mathematicalβ€”cos
Complex
instSub
instAdd
instMul
sin
β€”sub_eq_add_neg
cos_add
cos_neg
sin_neg
mul_neg
neg_neg
cos_sub_cos πŸ“–mathematicalβ€”Complex
instSub
cos
instMul
instNeg
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
cos_add
cos_sub
add_self_div_two
CharZero.NeZero.two
instCharZero
add_sub_cancel_right
add_right_comm
add_sub
add_div
add_sub_cancel_left
sub_add
div_sub_div_same
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
cos_sub_sin_I πŸ“–mathematicalβ€”Complex
instSub
cos
instMul
sin
I
exp
instNeg
β€”neg_mul
cosh_sub_sinh
sinh_mul_I
cosh_mul_I
cos_three_mul πŸ“–mathematicalβ€”cos
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
cos_add
cos_two_mul
sq
mul_sub
mul_one
sin_two_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
cos_sq'
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Nat.cast_one
Mathlib.Meta.NormNum.isInt_add
cos_two_mul πŸ“–mathematicalβ€”cos
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instOne
β€”Nat.instAtLeastTwoHAddOfNat
cos_two_mul'
eq_sub_iff_add_eq
sin_sq_add_cos_sq
sub_add
sub_add_eq_add_sub
two_mul
cos_two_mul' πŸ“–mathematicalβ€”cos
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
sin
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
cos_add
sq
cos_zero πŸ“–mathematicalβ€”cos
Complex
instZero
instOne
β€”MulZeroClass.zero_mul
exp_zero
neg_zero
add_self_div_two
CharZero.NeZero.two
instCharZero
cosh_add πŸ“–mathematicalβ€”cosh
Complex
instAdd
instMul
sinh
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
two_cosh
exp_add
neg_add
mul_add
Distrib.leftDistribClass
mul_assoc
two_sinh
mul_left_comm
cosh_add_sinh πŸ“–mathematicalβ€”Complex
instAdd
cosh
sinh
exp
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
mul_add
Distrib.leftDistribClass
two_cosh
two_sinh
add_add_sub_cancel
two_mul
cosh_conj πŸ“–mathematicalβ€”cosh
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”cosh.eq_1
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
exp_conj
map_add
SemilinearMapClass.toAddHomClass
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_ofNat
cosh_mul_I πŸ“–mathematicalβ€”cosh
Complex
instMul
I
cos
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
two_cosh
two_cos
neg_mul_eq_neg_mul
cosh_neg πŸ“–mathematicalβ€”cosh
Complex
instNeg
β€”exp_neg
neg_neg
add_comm
cosh_ofReal_im πŸ“–mathematicalβ€”im
cosh
ofReal
Real
Real.instZero
β€”ofReal_cosh_ofReal_re
ofReal_im
cosh_ofReal_re πŸ“–mathematicalβ€”re
cosh
ofReal
Real.cosh
β€”β€”
cosh_sq πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
cosh
instAdd
sinh
instOne
β€”cosh_sq_sub_sinh_sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
cosh_sq_sub_sinh_sq πŸ“–mathematicalβ€”Complex
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
cosh
sinh
instOne
β€”sq_sub_sq
cosh_add_sinh
cosh_sub_sinh
exp_add
add_neg_cancel
exp_zero
cosh_sub πŸ“–mathematicalβ€”cosh
Complex
instSub
instMul
sinh
β€”sub_eq_add_neg
cosh_add
cosh_neg
sinh_neg
mul_neg
cosh_sub_sinh πŸ“–mathematicalβ€”Complex
instSub
cosh
sinh
exp
instNeg
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
mul_sub
two_cosh
two_sinh
add_sub_sub_cancel
two_mul
cosh_three_mul πŸ“–mathematicalβ€”cosh
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
cosh_add
cosh_two_mul
sinh_two_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
sinh_sq
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.neg_mul
cosh_two_mul πŸ“–mathematicalβ€”cosh
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
sinh
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
cosh_add
sq
cosh_zero πŸ“–mathematicalβ€”cosh
Complex
instZero
instOne
β€”exp_zero
neg_zero
add_self_div_two
CharZero.NeZero.two
instCharZero
cot_conj πŸ“–mathematicalβ€”cot
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”cot.eq_1
sin_conj
cos_conj
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
cot_eq_cos_div_sin πŸ“–mathematicalβ€”cot
Complex
DivInvMonoid.toDiv
instDivInvMonoid
cos
sin
β€”β€”
cot_inv_eq_tan πŸ“–mathematicalβ€”Complex
instInv
cot
tan
β€”inv_div
enorm_exp_I_mul_ofReal πŸ“–mathematicalβ€”ENorm.enorm
Complex
NNNorm.toENorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
exp
instMul
I
ofReal
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”toReal_enorm
norm_exp_I_mul_ofReal
enorm_exp_ofReal_mul_I πŸ“–mathematicalβ€”ENorm.enorm
Complex
NNNorm.toENorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
exp
instMul
ofReal
I
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”toReal_enorm
norm_exp_ofReal_mul_I
exp_add_mul_I πŸ“–mathematicalβ€”exp
Complex
instAdd
instMul
I
cos
sin
β€”exp_add
exp_mul_I
exp_eq_exp_re_mul_sin_add_cos πŸ“–mathematicalβ€”exp
Complex
instMul
ofReal
re
instAdd
cos
im
sin
I
β€”exp_add_mul_I
re_add_im
exp_im πŸ“–mathematicalβ€”im
exp
Real
Real.instMul
Real.exp
re
Real.sin
β€”exp_eq_exp_re_mul_sin_add_cos
cos_ofReal_im
mul_one
sin_ofReal_im
MulZeroClass.mul_zero
add_zero
zero_add
exp_ofReal_im
sub_self
MulZeroClass.zero_mul
exp_mul_I πŸ“–mathematicalβ€”exp
Complex
instMul
I
instAdd
cos
sin
β€”cos_add_sin_I
exp_ofReal_mul_I_im πŸ“–mathematicalβ€”im
exp
Complex
instMul
ofReal
I
Real.sin
β€”exp_mul_I
cos_ofReal_im
mul_one
sin_ofReal_im
MulZeroClass.mul_zero
add_zero
zero_add
exp_ofReal_mul_I_re πŸ“–mathematicalβ€”re
exp
Complex
instMul
ofReal
I
Real.cos
β€”exp_mul_I
MulZeroClass.mul_zero
sin_ofReal_im
mul_one
sub_self
add_zero
exp_re πŸ“–mathematicalβ€”re
exp
Real
Real.instMul
Real.exp
Real.cos
im
β€”exp_eq_exp_re_mul_sin_add_cos
MulZeroClass.mul_zero
sin_ofReal_im
mul_one
sub_self
add_zero
exp_ofReal_im
cos_ofReal_im
zero_add
MulZeroClass.zero_mul
sub_zero
exp_sub_cosh πŸ“–mathematicalβ€”Complex
instSub
exp
cosh
sinh
β€”sub_eq_iff_eq_add
sinh_add_cosh
exp_sub_sinh πŸ“–mathematicalβ€”Complex
instSub
exp
sinh
cosh
β€”sub_eq_iff_eq_add
cosh_add_sinh
inv_one_add_tan_sq πŸ“–mathematicalβ€”Complex
instInv
instAdd
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
tan
cos
β€”tan_eq_sin_div_cos
div_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
cos_sq_add_sin_sq
NeZero.charZero_one
instCharZero
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
nnnorm_exp_I_mul_ofReal πŸ“–mathematicalβ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
exp
instMul
I
ofReal
NNReal
instOneNNReal
β€”nnnorm_norm
norm_exp_I_mul_ofReal
NNReal.coe_eq_one
abs_one
Real.instIsOrderedRing
nnnorm_exp_ofReal_mul_I πŸ“–mathematicalβ€”NNNorm.nnnorm
Complex
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NormedAddCommGroup.toSeminormedAddCommGroup
instNormedAddCommGroup
exp
instMul
ofReal
I
NNReal
instOneNNReal
β€”nnnorm_norm
norm_exp_ofReal_mul_I
NNReal.coe_eq_one
abs_one
Real.instIsOrderedRing
norm_cos_add_sin_mul_I πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instAdd
cos
ofReal
instMul
sin
I
Real
Real.instOne
β€”Real.sin_sq_add_cos_sq
MulZeroClass.mul_zero
sin_ofReal_im
mul_one
sub_self
add_comm
zero_add
cos_ofReal_im
sq
Real.sqrt_one
norm_exp πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
exp
Real.exp
re
β€”exp_eq_exp_re_mul_sin_add_cos
norm_mul
norm_exp_ofReal
norm_cos_add_sin_mul_I
mul_one
norm_exp_I_mul_ofReal πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
exp
instMul
I
ofReal
Real
Real.instOne
β€”mul_comm
norm_exp_ofReal_mul_I
norm_exp_I_mul_ofReal_sub_one πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
instSub
exp
instMul
I
ofReal
instOne
Real
Real.norm
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sin
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
norm_real
two_sin
one_mul
exp_zero
neg_add_cancel
exp_add
mul_assoc
mul_sub
add_mul
Distrib.rightDistribClass
Nat.cast_one
add_neg_cancel
ofReal_zero
MulZeroClass.zero_mul
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
neg_mul
norm_mul
norm_I
mul_one
neg_div'
norm_exp_ofReal_mul_I
norm_neg
neg_sub
mul_comm
norm_exp_eq_iff_re_eq πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
exp
re
β€”norm_exp
Real.exp_eq_exp
norm_exp_ofReal_mul_I πŸ“–mathematicalβ€”Norm.norm
Complex
instNorm
exp
instMul
ofReal
I
Real
Real.instOne
β€”exp_mul_I
norm_cos_add_sin_mul_I
ofReal_cos πŸ“–mathematicalβ€”ofReal
Real.cos
cos
β€”ofReal_cos_ofReal_re
ofReal_cos_ofReal_re πŸ“–mathematicalβ€”ofReal
re
cos
β€”conj_eq_iff_re
cos_conj
conj_ofReal
ofReal_cosh πŸ“–mathematicalβ€”ofReal
Real.cosh
cosh
β€”ofReal_cosh_ofReal_re
ofReal_cosh_ofReal_re πŸ“–mathematicalβ€”ofReal
re
cosh
β€”conj_eq_iff_re
cosh_conj
conj_ofReal
ofReal_cot πŸ“–mathematicalβ€”ofReal
Real.cot
cot
β€”ofReal_cot_ofReal_re
ofReal_cot_ofReal_re πŸ“–mathematicalβ€”ofReal
re
cot
β€”conj_eq_iff_re
cot_conj
conj_ofReal
ofReal_sin πŸ“–mathematicalβ€”ofReal
Real.sin
sin
β€”ofReal_sin_ofReal_re
ofReal_sin_ofReal_re πŸ“–mathematicalβ€”ofReal
re
sin
β€”conj_eq_iff_re
sin_conj
conj_ofReal
ofReal_sinh πŸ“–mathematicalβ€”ofReal
Real.sinh
sinh
β€”ofReal_sinh_ofReal_re
ofReal_sinh_ofReal_re πŸ“–mathematicalβ€”ofReal
re
sinh
β€”conj_eq_iff_re
sinh_conj
conj_ofReal
ofReal_tan πŸ“–mathematicalβ€”ofReal
Real.tan
tan
β€”ofReal_tan_ofReal_re
ofReal_tan_ofReal_re πŸ“–mathematicalβ€”ofReal
re
tan
β€”conj_eq_iff_re
tan_conj
conj_ofReal
ofReal_tanh πŸ“–mathematicalβ€”ofReal
Real.tanh
tanh
β€”ofReal_tanh_ofReal_re
ofReal_tanh_ofReal_re πŸ“–mathematicalβ€”ofReal
re
tanh
β€”conj_eq_iff_re
tanh_conj
conj_ofReal
one_add_tan_sq_mul_cos_sq_eq_one πŸ“–mathematicalβ€”Complex
instMul
instAdd
instOne
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
tan
cos
β€”sin_sq_add_cos_sq
tan_mul_cos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
sin_add πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
cos
β€”mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
I_ne_zero
sinh_mul_I
add_mul
Distrib.rightDistribClass
mul_right_comm
mul_assoc
cosh_mul_I
sinh_add
sin_add_mul_I πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
I
cosh
cos
sinh
β€”sin_add
cos_mul_I
sin_mul_I
mul_assoc
sin_add_sin πŸ“–mathematicalβ€”Complex
instAdd
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
cos
instSub
β€”Nat.instAtLeastTwoHAddOfNat
sin_neg
sub_neg_eq_add
sin_sub_sin
sin_bound πŸ“–mathematicalReal
Real.instLE
Norm.norm
Complex
instNorm
Real.instOne
instSub
sin
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instMonoid
Real.instDivInvMonoid
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
neg_mul
Finset.sum_congr
Finset.sum_range_succ
Finset.sum_singleton
pow_zero
Nat.cast_one
div_self
NeZero.charZero_one
instCharZero
pow_one
zero_add
mul_one
div_one
Even.neg_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
le_imp_le_of_le_of_le
norm_sub_le
le_refl
norm_div
norm_mul
norm_I
norm_ofNat
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
exp_bound
norm_neg
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
add_le_add_right
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Meta.NormNum.isNat_natSucc
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_factorial
Mathlib.Meta.NormNum.isNNRat_div
add_halves
CharZero.NeZero.two
sin_conj πŸ“–mathematicalβ€”sin
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
I_ne_zero
sinh_mul_I
conj_neg_I
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
sinh_conj
mul_neg
sinh_neg
sin_eq πŸ“–mathematicalβ€”sin
Complex
instAdd
instMul
ofReal
re
cosh
im
cos
sinh
I
β€”re_add_im
sin_add_mul_I
sin_mul_I πŸ“–mathematicalβ€”sin
Complex
instMul
I
sinh
β€”mul_comm
sinh_mul_I
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
I_sq
mul_neg
sinh_neg
neg_neg
ext
neg_mul
MulZeroClass.zero_mul
one_mul
zero_sub
MulZeroClass.mul_zero
zero_add
sin_neg πŸ“–mathematicalβ€”sin
Complex
instNeg
β€”neg_neg
neg_mul
exp_neg
sub_eq_add_neg
add_mul
Distrib.rightDistribClass
neg_div
neg_add_rev
sin_ofReal_im πŸ“–mathematicalβ€”im
sin
ofReal
Real
Real.instZero
β€”ofReal_sin_ofReal_re
ofReal_im
sin_ofReal_re πŸ“–mathematicalβ€”re
sin
ofReal
Real.sin
β€”β€”
sin_sq πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
sin
instSub
instOne
cos
β€”sin_sq_add_cos_sq
add_sub_cancel_right
sin_sq_add_cos_sq πŸ“–mathematicalβ€”Complex
instAdd
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
sin
cos
instOne
β€”cosh_mul_I
sinh_mul_I
mul_pow
I_sq
mul_neg_one
sub_neg_eq_add
add_comm
cosh_sq_sub_sinh_sq
sin_sub πŸ“–mathematicalβ€”sin
Complex
instSub
instMul
cos
β€”sub_eq_add_neg
sin_add
cos_neg
sin_neg
mul_neg
sin_sub_sin πŸ“–mathematicalβ€”Complex
instSub
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
cos
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
sin_add
sin_sub
add_self_div_two
CharZero.NeZero.two
instCharZero
add_sub_cancel_right
add_right_comm
add_sub
add_div
add_sub_cancel_left
sub_add
div_sub_div_same
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
sin_three_mul πŸ“–mathematicalβ€”sin
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
sin_add
cos_two_mul
cos_sq'
sin_two_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
sin_two_mul πŸ“–mathematicalβ€”sin
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
sin_add
add_mul
Distrib.rightDistribClass
mul_comm
sin_zero πŸ“–mathematicalβ€”sin
Complex
instZero
β€”neg_zero
MulZeroClass.zero_mul
exp_zero
sub_self
zero_div
sinh_add πŸ“–mathematicalβ€”sinh
Complex
instAdd
instMul
cosh
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
two_sinh
exp_add
neg_add
mul_add
Distrib.leftDistribClass
mul_assoc
mul_left_comm
two_cosh
sinh_add_cosh πŸ“–mathematicalβ€”Complex
instAdd
sinh
cosh
exp
β€”add_comm
cosh_add_sinh
sinh_conj πŸ“–mathematicalβ€”sinh
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”sinh.eq_1
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
instCharZero
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
exp_conj
map_sub
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_ofNat
sinh_mul_I πŸ“–mathematicalβ€”sinh
Complex
instMul
I
sin
β€”Nat.instAtLeastTwoHAddOfNat
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Field.isDomain
two_ne_zero'
CharZero.NeZero.two
instCharZero
two_sinh
mul_assoc
two_sin
I_mul_I
mul_neg_one
neg_sub
neg_mul_eq_neg_mul
sinh_neg πŸ“–mathematicalβ€”sinh
Complex
instNeg
β€”exp_neg
neg_neg
neg_div
neg_sub
sinh_ofReal_im πŸ“–mathematicalβ€”im
sinh
ofReal
Real
Real.instZero
β€”ofReal_sinh_ofReal_re
ofReal_im
sinh_ofReal_re πŸ“–mathematicalβ€”re
sinh
ofReal
Real.sinh
β€”β€”
sinh_sq πŸ“–mathematicalβ€”Complex
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
sinh
instSub
cosh
instOne
β€”cosh_sq_sub_sinh_sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
sinh_sub πŸ“–mathematicalβ€”sinh
Complex
instSub
instMul
cosh
β€”sub_eq_add_neg
sinh_add
cosh_neg
sinh_neg
mul_neg
sinh_sub_cosh πŸ“–mathematicalβ€”Complex
instSub
sinh
cosh
instNeg
exp
β€”neg_sub
cosh_sub_sinh
sinh_three_mul πŸ“–mathematicalβ€”sinh
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
sinh_add
cosh_two_mul
sinh_two_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
cosh_sq
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
sinh_two_mul πŸ“–mathematicalβ€”sinh
Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cosh
β€”Nat.instAtLeastTwoHAddOfNat
two_mul
sinh_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
sinh_zero πŸ“–mathematicalβ€”sinh
Complex
instZero
β€”exp_zero
neg_zero
sub_self
zero_div
tan_conj πŸ“–mathematicalβ€”tan
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”tan.eq_1
sin_conj
cos_conj
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
tan_eq_sin_div_cos πŸ“–mathematicalβ€”tan
Complex
DivInvMonoid.toDiv
instDivInvMonoid
sin
cos
β€”β€”
tan_inv_eq_cot πŸ“–mathematicalβ€”Complex
instInv
tan
cot
β€”inv_div
tan_mul_I πŸ“–mathematicalβ€”tan
Complex
instMul
I
tanh
β€”tan.eq_1
sin_mul_I
cos_mul_I
mul_div_right_comm
tanh_eq_sinh_div_cosh
tan_mul_cos πŸ“–mathematicalβ€”Complex
instMul
tan
cos
sin
β€”tan_eq_sin_div_cos
div_mul_cancelβ‚€
tan_neg πŸ“–mathematicalβ€”tan
Complex
instNeg
β€”sin_neg
cos_neg
neg_div
tan_ofReal_im πŸ“–mathematicalβ€”im
tan
ofReal
Real
Real.instZero
β€”ofReal_tan_ofReal_re
ofReal_im
tan_ofReal_re πŸ“–mathematicalβ€”re
tan
ofReal
Real.tan
β€”β€”
tan_sq_div_one_add_tan_sq πŸ“–mathematicalβ€”Complex
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiring
tan
instAdd
instOne
sin
β€”div_eq_mul_inv
tan_mul_cos
mul_pow
inv_one_add_tan_sq
tan_zero πŸ“–mathematicalβ€”tan
Complex
instZero
β€”sin_zero
cos_zero
div_one
tanh_conj πŸ“–mathematicalβ€”tanh
DFunLike.coe
RingHom
Complex
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”tanh.eq_1
sinh_conj
cosh_conj
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
tanh_eq_sinh_div_cosh πŸ“–mathematicalβ€”tanh
Complex
DivInvMonoid.toDiv
instDivInvMonoid
sinh
cosh
β€”β€”
tanh_mul_I πŸ“–mathematicalβ€”tanh
Complex
instMul
I
tan
β€”tanh_eq_sinh_div_cosh
cosh_mul_I
sinh_mul_I
mul_div_right_comm
tan.eq_1
tanh_neg πŸ“–mathematicalβ€”tanh
Complex
instNeg
β€”sinh_neg
cosh_neg
neg_div
tanh_ofReal_im πŸ“–mathematicalβ€”im
tanh
ofReal
Real
Real.instZero
β€”ofReal_tanh_ofReal_re
ofReal_im
tanh_ofReal_re πŸ“–mathematicalβ€”re
tanh
ofReal
Real.tanh
β€”β€”
tanh_zero πŸ“–mathematicalβ€”tanh
Complex
instZero
β€”sinh_zero
cosh_zero
div_one
two_cos πŸ“–mathematicalβ€”Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
instAdd
exp
I
instNeg
β€”mul_div_cancelβ‚€
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
instCharZero
two_cosh πŸ“–mathematicalβ€”Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cosh
instAdd
exp
instNeg
β€”mul_div_cancelβ‚€
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
instCharZero
two_sin πŸ“–mathematicalβ€”Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
instSub
exp
instNeg
I
β€”mul_div_cancelβ‚€
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
instCharZero
two_sinh πŸ“–mathematicalβ€”Complex
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sinh
instSub
exp
instNeg
β€”mul_div_cancelβ‚€
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
instCharZero

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalCosh πŸ“–CompOpβ€”

Real

Definitions

NameCategoryTheorems
cos πŸ“–CompOp
318 mathmath: cos_add_nat_mul_pi, InnerProductGeometry.cos_angle_add_of_inner_eq_zero, Polynomial.Chebyshev.isExtrOn_T_real_iff, cos_pi_div_five, iteratedDerivWithin_cos_Ioo, EulerSine.integral_cos_mul_cos_pow, sin_add_sin, ContDiffOn.cos, sin_eq_zero_iff_cos_eq, integral_cos, iteratedDeriv_odd_cos, cos_add_pi, HurwitzZeta.LSeriesHasSum_cos, analyticOn_cos, integral_sin_mul_cosβ‚‚, abs_cos_le_one, cos_sub_pi, cos_eq_zero_iff, rpow_eq_nhds_of_neg, mapsTo_cos, mapsTo_cos_Ioo, Complex.exp_re, one_add_mul_le_cos, cos_int_mul_two_pi, Complex.cos_ofReal_re, selfAdjoint.norm_sq_expUnitary_sub_one, tendsto_cos_pi_div_two, hasDerivAt_sin, Angle.cos_eq_real_cos_iff_eq_or_eq_neg, InnerProductGeometry.norm_div_cos_angle_sub_of_inner_eq_zero, Polynomial.Chebyshev.eval_T_real_eq_neg_one_iff, integral_sin_pow_three, cos_le_one_div_sqrt_sq_add_one, one_sub_sq_div_two_le_cos, analyticAt_cos, cos_add_int_mul_two_pi, cos_neg_of_pi_div_two_lt_of_lt, HasDerivWithinAt.sin, Polynomial.Chebyshev.isLocalMin_T_real, iteratedDerivWithin_cos_Icc, cos_arcsin, Polynomial.Chebyshev.integral_measureT_eq_integral_cos_of_continuous, Polynomial.isRoot_cos_pi_div_five, integral_cos_pow, cos_nat_mul_two_pi_sub_pi, sin_sub_pi_div_two, cos_add_two_pi, isIntegral_two_mul_cos_rat_mul_pi, EulerSine.integral_cos_mul_cos_pow_aux, antitoneOn_cos, cos_two_neg, cos_nat_mul_pi, fderivWithin_sin, continuous_tan, integral_sin_sq, ContDiff.cos, Polynomial.Chebyshev.T_real_cos, cos_pi_div_four, HasDerivWithinAt.cos, range_cos, cos_add_cos, sin_sub, cos_three_mul, cos_two_pi, integral_cos_pow_aux, hasSum_cos, cos_pi_div_sixteen, one_add_tan_sq_mul_cos_sq_eq_one, cos_two_pi_sub, sin_sq, inv_one_add_tan_sq, EuclideanGeometry.dist_sq_eq_dist_sq_add_dist_sq_sub_two_mul_dist_mul_dist_mul_cos_angle, Complex.norm_mul_cos_arg, measurable_cos, HurwitzZeta.hasSum_nat_completedCosZeta, cos_le_one_sub_mul_cos_sq, cosPartialEquiv_apply, differentiable_cos, Complex.exp_ofReal_mul_I_re, InnerProductGeometry.cos_angle, cot_eq_cos_div_sin, cos_one_le, cos_nonpos_of_pi_div_two_le_of_le, Polynomial.Chebyshev.isLocalMax_T_real, tendsto_cos_neg_pi_div_two, cos_nonneg_of_mem_Icc, Polynomial.Chebyshev.S_two_mul_real_cos, InnerProductGeometry.cos_angle_mul_norm_mul_norm, HasStrictDerivAt.sin, Complex.cpow_ofReal_re, sq_cos_pi_div_six, abs_cos_int_mul_pi, abs_iteratedDeriv_cos_le_one, intervalIntegral.intervalIntegrable_cos, EulerSine.sin_pi_mul_eq, fderivWithin_cos, differentiableAt_cos, sin_pi_div_two_sub, integral_sin_pow_mul_cos_pow_odd, isAlgebraic_cos_rat_mul_pi, cos_pi_div_two, rpow_def_of_neg, hasDerivAt_tan, deriv_tan_sub_id, HasDerivAt.cos, EuclideanGeometry.cos_oangle_eq_cos_angle, iteratedDeriv_add_one_cos, cos_int_mul_pi_sub, sin_sq_eq_half_sub, sin_add, Measurable.cos, continuousOn_cos, cos_pi_div_eight, Quaternion.exp_of_re_eq_zero, HurwitzZeta.hasSum_nat_cosZeta, integral_sin_mul_cos₁, cos_eq_tsum, InnerProductGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, Quaternion.re_exp, integral_sin_pow_aux, hasSum_one_div_nat_pow_mul_cos, cos_eq_cos_iff, derivWithin_cos, integral_sin_pow_even_mul_cos_pow_even, InnerProductGeometry.cos_eq_neg_one_iff_angle_eq_pi, sin_two_mul, cos_int_mul_two_pi_add_pi, hasDerivAt_cos, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, fderiv_cos, InnerProductGeometry.cos_angle_sub_of_inner_eq_zero, polarCoord_symm_apply, abs_sin_half, two_mul_cos_mul_cos, abs_sin_eq_sqrt_one_sub_cos_sq, Angle.cos_eq_iff_coe_eq_or_eq_neg, cos_add, cos_arcsin_nonneg, cos_one_pos, cos_pi_sub, cos_pi_div_six, sin_half_eq_neg_sqrt, differentiable_iteratedDeriv_cos, cos_eq_one_iff_of_lt_of_lt, Polynomial.Chebyshev.rootMultiplicity_T_real, DifferentiableOn.cos, Polynomial.Chebyshev.U_real_cos, sin_add_pi_div_two, contDiff_cos, cos_sub_nat_mul_two_pi, iteratedDeriv_even_cos, EuclideanGeometry.cos_angle_of_angle_eq_pi_div_two, EuclideanGeometry.cos_eq_neg_one_iff_angle_eq_pi, one_sub_mul_le_cos, Polynomial.Chebyshev.isMinOn_T_real, integral_cos_pow_three, abs_cos_sub_cos_le, Polynomial.Chebyshev.isLocalExtr_T_real_iff, analyticWithinAt_cos, bijOn_cos, cos_sq', cos_pos_of_mem_Ioo, Orientation.cos_oangle_eq_cos_angle, derivWithin_sin, cos_sub_int_mul_pi, InnerProductGeometry.cos_angle_add_mul_norm_of_inner_eq_zero, cos_pi_div_thirty_two, neg_one_le_cos, Polynomial.Chebyshev.isMaxOn_T_real, HasStrictFDerivAt.cos, ContDiffWithinAt.cos, deriv_cos, cos_nat_mul_pi_sub, Polynomial.Chebyshev.rootMultiplicity_U_real, continuous_cos, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, EuclideanGeometry.cos_angle_mul_dist_of_angle_eq_pi_div_two, EulerSine.integral_cos_pow_eq, cos_arccos, HasFDerivAt.sin, integral_sin, sin_sq_add_cos_sq, Angle.cos_coe, Angle.cos_toReal, ContinuousLinearMap.rotation_apply, sin_sub_sin, EuclideanGeometry.cos_eq_zero_iff_angle_eq_pi_div_two, cos_sq_le_one, intervalIntegrable_log_cos, integral_sin_pow_odd_mul_cos_pow, EulerSine.tendsto_integral_cos_pow_mul_div, cos_lt_cos_of_nonneg_of_le_pi_div_two, cos_sq_add_sin_sq, cos_sub_cos, cos_nat_mul_two_pi_sub, cos_pi_over_two_pow, cos_eq_zero_iff_sin_eq, abs_cos_eq_sqrt_one_sub_sin_sq, hasStrictDerivAt_cos, cos_half, cos_neg, arccos_cos, integral_sin_mul_cos_sq, iteratedDeriv_add_one_sin, surjOn_cos, quadratic_root_cos_pi_div_five, cos_antiperiodic, cos_periodic, analyticOnNhd_cos, one_sub_sq_div_two_lt_cos, HasFDerivAt.cos, cos_sub_nat_mul_pi, EuclideanGeometry.dist_div_cos_angle_of_angle_eq_pi_div_two, Polynomial.Chebyshev.roots_T_real, deriv_cos, Complex.ofReal_cos, cos_lt_one_div_sqrt_sq_add_one, hasStrictDerivAt_sin, DifferentiableAt.cos, cos_add_pi_div_two, cos_sub_two_pi, cos_two_mul, tan_mul_cos, cos_int_mul_two_pi_sub_pi, deriv_cos', continuousOn_tan, hasDerivAt_tan_of_mem_Ioo, Polynomial.Chebyshev.eval_T_real_eq_one_iff, integral_sin_sq_mul_cos, lipschitzWith_cos, cos_eq_one_iff, EulerSine.integral_cos_pow_pos, cos_nonneg_of_neg_pi_div_two_le_of_le, cos_nat_mul_two_pi_add_pi, InnerProductGeometry.cos_eq_one_iff_angle_eq_zero, cos_sub_int_mul_two_pi, iteratedDeriv_odd_sin, EuclideanGeometry.law_cos, irrational_cos_rat_mul_pi, HasStrictFDerivAt.sin, strictAntiOn_cos, Complex.norm_exp_mul_exp_add_exp_neg_le_of_abs_im_le, cos_lt_cos_of_nonneg_of_le_pi, Complex.polarCoord_symm_apply, cos_sq, cos_int_mul_two_pi_sub, ContDiffAt.cos, hasStrictDerivAt_tan, rpow_def_of_nonpos, InnerProductGeometry.norm_sub_sq_eq_norm_sq_add_norm_sq_sub_two_mul_norm_mul_norm_mul_cos_angle, Polynomial.Chebyshev.isLocalExtr_T_real, deriv_sin, Polynomial.Chebyshev.isExtrOn_T_real, integral_sin_pow, HasStrictDerivAt.cos, InnerProductGeometry.cos_angle_sub_mul_norm_of_inner_eq_zero, cos_arctan_pos, cos_add_nat_mul_two_pi, integral_sin_sq_mul_cos_sq, InnerProductGeometry.inner_eq_cos_angle_of_norm_eq_one, isIntegral_two_mul_cos_rat_mul_pi, cos_eq_neg_one_iff, abs_cos_eq_one_iff, cos_sub, integral_cos_sq, cos_eq_sqrt_one_sub_sin_sq, cos_pi_div_three, cos_zero, EuclideanGeometry.cos_eq_one_iff_angle_eq_zero, AEMeasurable.cos, logDeriv_cos, cos_add_int_mul_pi, HasDerivAt.sin, cos_sub_pi_div_two, strictConcaveOn_cos_Icc, HasFDerivWithinAt.cos, integral_cos_sq_sub_sin_sq, deriv_sin, injOn_cos, HurwitzZeta.hasSum_nat_cosKernelβ‚€, cos_nat_mul_two_pi, cos_le_cos_of_nonneg_of_le_pi, cos_sq_arctan, Polynomial.Chebyshev.roots_U_real_nodup, cos_pi, cos_pos_of_le_one, deriv_tan, cos_int_mul_pi, Polynomial.Chebyshev.roots_T_real_nodup, cos_pi_div_two_sub, Differentiable.cos, cos_mem_Icc, sin_half_eq_sqrt, sin_eq_sqrt_one_sub_cos_sq, two_mul_sin_mul_sin, range_cos_infinite, cos_two_mul', Polynomial.Chebyshev.C_two_mul_real_cos, unitary.two_mul_one_sub_cos_norm_argSelfAdjoint, Polynomial.Chebyshev.roots_U_real, HasFDerivWithinAt.sin, cos_le_one, fderiv_sin, Complex.cos_arg, EulerSine.integral_cos_mul_cos_pow_even, Quaternion.exp_eq, cos_bound, cos_abs, Polynomial.Chebyshev.abs_eval_T_real_eq_one_iff, tan_eq_sin_div_cos, two_mul_sin_mul_cos, Complex.cpow_ofReal, Polynomial.Chebyshev.eval_T_real_cos_int_mul_pi_div, DifferentiableWithinAt.cos, cos_arctan, exists_cos_eq_zero, InnerProductGeometry.norm_div_cos_angle_add_of_inner_eq_zero, Unitary.two_mul_one_sub_cos_norm_argSelfAdjoint
cosh πŸ“–CompOp
108 mathmath: one_le_cosh, exp_sub_sinh, sinh_add, HasDerivWithinAt.cosh, Differentiable.cosh, analyticOn_cosh, ContDiffOn.cosh, cosh_abs, iteratedDeriv_even_cosh, ContDiffWithinAt.cosh, derivWithin_cosh, fderivWithin_sinh, hasStrictDerivAt_sinh, cosh_surjOn, hasSum_cosh, tanh_eq_sinh_div_cosh, deriv_sinh, cosh_arcosh, UpperHalfPlane.center_im, analyticOnNhd_cosh, continuous_cosh, UpperHalfPlane.cosh_dist, UpperHalfPlane.dist_coe_center, iteratedDeriv_add_one_cosh, iteratedDeriv_add_one_sinh, HasDerivAt.cosh, hasStrictDerivAt_cosh, HasStrictDerivAt.cosh, ContDiffAt.cosh, cosh_sq, UpperHalfPlane.dist_self_center, Polynomial.Chebyshev.S_two_mul_real_cosh, exp_mul_le_cosh_add_mul_sinh, HasDerivAt.sinh, sinh_sq, sinh_sub, exp_sub_cosh, iteratedDeriv_odd_sinh, measurable_cosh, cosh_zero, differentiableAt_cosh, Measurable.cosh, deriv_sinh, DifferentiableAt.cosh, HasFDerivWithinAt.sinh, cosh_pos, sinh_two_mul, cosh_le_exp_half_sq, cosh_add_sinh, DifferentiableWithinAt.cosh, cosh_bijOn, HasFDerivAt.sinh, differentiable_cosh, HasDerivWithinAt.sinh, one_lt_cosh, cosh_lt_cosh, cosh_sub, sinh_sub_cosh, iteratedDeriv_odd_cosh, hasDerivAt_cosh, cosh_le_cosh, fderiv_sinh, UpperHalfPlane.cosh_half_dist, Polynomial.Chebyshev.T_real_cosh, arcosh_cosh, cosh_strictMonoOn, cosh_arsinh, cosh_three_mul, DifferentiableOn.cosh, contDiff_cosh, differentiable_iteratedDeriv_cosh, analyticAt_cosh, sinh_lt_cosh, cosh_sq', cosh_log, Polynomial.Chebyshev.U_real_cosh, iteratedDerivWithin_cosh_Icc, HasStrictDerivAt.sinh, cosh_sub_sinh, sinh_add_cosh, fderivWithin_cosh, cosh_injOn, UpperHalfPlane.dist_coe_center_sq, iteratedDerivWithin_cosh_Ioo, Complex.ofReal_cosh, cosh_eq, UpperHalfPlane.cosh_dist', HasStrictFDerivAt.cosh, cosh_sq_sub_sinh_sq, analyticWithinAt_cosh, fderiv_cosh, HasStrictFDerivAt.sinh, cosh_eq_tsum, HasFDerivAt.cosh, derivWithin_sinh, Complex.cosh_ofReal_re, cosh_add, logDeriv_cosh, hasDerivAt_sinh, cosh_neg, deriv_cosh, cosh_two_mul, cosh_artanh, AEMeasurable.cosh, deriv_cosh, ContDiff.cosh, HasFDerivWithinAt.cosh, Polynomial.Chebyshev.C_two_mul_real_cosh
cot πŸ“–CompOp
5 mathmath: tan_inv_eq_cot, Complex.ofReal_cot, cot_eq_cos_div_sin, logDeriv_sin, cot_inv_eq_tan
sin πŸ“–CompOp
310 mathmath: range_sin, sin_add_sin, sin_le_sin_of_le_of_le_pi_div_two, sin_arctan, sin_eq_zero_iff_cos_eq, integral_cos, iteratedDeriv_odd_cos, sin_pi_div_two, sin_add_two_pi, integral_sin_mul_cosβ‚‚, analyticOnNhd_sin, sin_periodic, lt_sin, EuclideanGeometry.law_sin, InnerProductGeometry.sin_angle, range_sin_infinite, sin_arctan_nonneg, isIntegral_two_mul_sin_rat_mul_pi, hasDerivAt_sin, integral_log_sin_zero_pi_div_two, sin_two_pi, integral_sin_pow_three, sin_lt, sin_le_one, abs_sin_eq_sin_abs_of_abs_le_pi, sin_pi_sub, sin_pi, sinc_eq_dslope, integral_sin_pow_pos, sin_arcsin, sin_pi_div_three, HasDerivWithinAt.sin, InnerProductGeometry.sin_angle_div_norm_eq_sin_angle_div_norm, sin_add_int_mul_pi, integral_cos_pow, sin_antiperiodic, sin_sub_pi_div_two, HurwitzZeta.hasSum_nat_sinZeta, sin_gt_sub_cube, EulerSine.integral_cos_mul_cos_pow_aux, sin_add_nat_mul_pi, sin_lt_sin_of_lt_of_le_pi_div_two, fderivWithin_sin, Affine.Triangle.dist_div_sin_angle_eq_two_mul_circumradius, integral_sin_sq, HasDerivWithinAt.cos, InnerProductGeometry.sin_angle_mul_norm_eq_sin_angle_mul_norm, sin_sq_arctan, sin_pos_of_pos_of_le_two, Gamma_mul_Gamma_one_sub, sin_sub, mul_le_sin, integral_cos_pow_aux, intervalIntegral.intervalIntegrable_sin, InnerProductGeometry.sin_angle_nonneg, Complex.norm_exp_I_mul_ofReal_sub_one, InnerProductGeometry.sin_eq_one_iff_angle_eq_pi_div_two, sin_sq, InnerProductGeometry.norm_toLp_symm_crossProduct, sin_arcsin', tan_div_sqrt_one_add_tan_sq, cot_eq_cos_div_sin, analyticAt_sin, Differentiable.sin, Polynomial.Chebyshev.S_two_mul_real_cos, HasStrictDerivAt.sin, sin_nonneg_of_nonneg_of_le_pi, InnerProductGeometry.sin_angle_sub_of_inner_eq_zero, tendsto_sin_neg_pi_div_two, le_arcsin_iff_sin_le', ContDiff.sin, sin_zero, HurwitzZeta.hasSum_nat_sinKernel, isEquivalent_sin, sin_nat_mul_two_pi_sub, fderivWithin_cos, sin_pi_div_two_sub, InnerProductGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, integral_sin_pow_mul_cos_pow_odd, EuclideanGeometry.sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, Angle.sin_eq_iff_coe_eq_or_add_eq_pi, HasDerivAt.cos, iteratedDeriv_add_one_cos, sin_eq_tsum, sin_arctan_pos, sin_sq_eq_half_sub, sin_add, sin_neg, integral_exp_mul_I_eq_sin, tan_sq_div_one_add_tan_sq, Quaternion.exp_of_re_eq_zero, arcsin_lt_iff_lt_sin, lipschitzWith_sin, integral_sin_mul_cos₁, continuous_sin, arcsin_le_iff_le_sin', integral_sin_pow_aux, Wallis.W_eq_integral_sin_pow_div_integral_sin_pow, DifferentiableWithinAt.sin, sin_nat_mul_pi, abs_sin_sub_sin_le, hasStrictDerivAt_const_rpow_of_neg, derivWithin_cos, EuclideanGeometry.sin_eq_one_iff_angle_eq_pi_div_two, integral_sin_pow_even_mul_cos_pow_even, sin_two_pi_sub, EuclideanGeometry.sin_angle_div_dist_eq_sin_angle_div_dist, sinOrderIso_apply, AEMeasurable.sin, sin_two_mul, InnerProductGeometry.norm_ofLp_crossProduct, iteratedDerivWithin_sin_Icc, sin_pos_of_pos_of_lt_pi, Complex.exp_ofReal_mul_I_im, hasDerivAt_cos, sin_eq_sin_iff, EulerSine.integral_sin_mul_sin_mul_cos_pow_eq, fderiv_cos, InnerProductGeometry.norm_div_sin_angle_add_of_inner_eq_zero, polarCoord_symm_apply, sin_nonneg_of_mem_Icc, EuclideanGeometry.dist_div_sin_angle_of_angle_eq_pi_div_two, abs_sin_half, abs_sin_eq_sqrt_one_sub_cos_sq, cos_add, ContDiffOn.sin, sin_nonpos_of_nonpos_of_neg_pi_le, contDiff_sin, sin_int_mul_two_pi_sub, sin_half_eq_neg_sqrt, InnerProductGeometry.sin_angle_sub_mul_norm_of_inner_eq_zero, sin_int_mul_pi_sub, Polynomial.Chebyshev.U_real_cos, sin_add_pi_div_two, EuclideanGeometry.sin_angle_of_angle_eq_pi_div_two, Complex.sin_ofReal_re, continuousOn_sin, EuclideanGeometry.collinear_iff_eq_or_eq_or_sin_eq_zero, lt_arcsin_iff_sin_lt, HurwitzZeta.hasSum_nat_completedSinZeta, integral_cos_pow_three, lt_arcsin_iff_sin_lt', Quaternion.im_exp, sin_pi_over_two_pow_succ, bijOn_sin, EuclideanGeometry.sin_angle_mul_dist_eq_sin_angle_mul_dist, cos_sq', differentiable_sin, mul_abs_le_abs_sin, InnerProductGeometry.norm_div_sin_angle_sub_of_inner_eq_zero, derivWithin_sin, integral_log_sin_zero_pi, sin_div_le_inv_abs, sin_sub_int_mul_pi, EuclideanGeometry.dist_eq_dist_mul_sin_angle_div_sin_angle, abs_sin_lt_abs, DifferentiableAt.sin, sin_sq_le_sq, sin_sq_le_one, HasStrictFDerivAt.cos, Angle.sin_coe, deriv_cos, le_sin, sin_bound, surjOn_sin, sin_pi_div_thirty_two, sin_pi_div_six, EulerSine.integral_cos_pow_eq, analyticOn_sin, sin_sub_pi, HasFDerivAt.sin, integral_sin, sin_sq_add_cos_sq, EuclideanGeometry.sin_angle_mul_dist_of_angle_eq_pi_div_two, sin_arctan_eq_zero, injOn_sin, ContinuousLinearMap.rotation_apply, sin_sub_sin, lt_sin_mul, integral_sin_pow_odd_mul_cos_pow, cos_sq_add_sin_sq, cos_sub_cos, arcsin_sin, sin_arccos, cos_eq_zero_iff_sin_eq, abs_cos_eq_sqrt_one_sub_sin_sq, hasStrictDerivAt_cos, mapsTo_sin, isAlgebraic_sin_rat_mul_pi, integral_sin_mul_cos_sq, iteratedDeriv_add_one_sin, differentiable_iteratedDeriv_sin, iteratedDeriv_even_sin, HasFDerivAt.cos, arcsin_lt_iff_lt_sin', sin_three_mul, le_arcsin_iff_sin_le, sin_add_nat_mul_two_pi, hasSum_one_div_nat_pow_mul_sin, mul_lt_sin, neg_one_le_sin, deriv_cos, abs_sin_eq_one_iff, mapsTo_sin_Ioo, sin_pos_of_mem_Ioo, abs_iteratedDeriv_sin_le_one, sin_arctan_strictMono, Complex.cpow_ofReal_im, sin_eq_neg_one_iff, sin_pi_div_sixteen, hasStrictDerivAt_sin, cos_add_pi_div_two, integral_sin_pow_succ_le, tan_mul_cos, logDeriv_sin, DifferentiableOn.sin, deriv_cos', sin_sub_nat_mul_pi, strictConcaveOn_sin_Icc, InnerProductGeometry.sin_angle_add_of_inner_eq_zero, sin_sq_lt_sq, integral_sin_sq_mul_cos, hasSum_sin, measurable_sin, sin_sq_pi_over_two_pow, sq_sin_pi_div_three, abs_sin_le_abs, Complex.ofReal_sin, arcsin_sin', monotoneOn_sin, abs_sin_le_one, analyticWithinAt_sin, sin_nat_mul_pi_sub, Affine.Triangle.dist_div_sin_angle_div_two_eq_circumradius, sin_eq_zero_iff, sinc_of_ne_zero, sin_arctan_le_zero, ContDiffAt.sin, iteratedDeriv_odd_sin, sinc_apply, integral_sin_pow_odd, HasStrictFDerivAt.sin, Complex.polarCoord_symm_apply, Measurable.sin, arcsin_eq_iff_eq_sin, sin_neg_of_neg_of_neg_pi_lt, tendsto_euler_sin_prod, sin_pi_div_eight, deriv_sin, tendsto_sin_pi_div_two, integral_sin_pow, strictMonoOn_sin, HasStrictDerivAt.cos, integral_sin_sq_mul_cos_sq, sin_sub_two_pi, cos_sub, integral_cos_sq, HurwitzZeta.LSeriesHasSum_sin, cos_eq_sqrt_one_sub_sin_sq, hasStrictFDerivAt_rpow_of_neg, arcsin_le_iff_le_sin, le_sin_mul, ContDiffWithinAt.sin, EuclideanGeometry.sin_pos_of_not_collinear, sin_add_pi, sin_le, HasDerivAt.sin, Angle.sin_eq_real_sin_iff_eq_or_add_eq_pi, sin_sub_int_mul_two_pi, differentiableAt_sin, InnerProductGeometry.sin_angle_add, cos_sub_pi_div_two, HasFDerivWithinAt.cos, integral_cos_sq_sub_sin_sq, InnerProductGeometry.sin_angle_add_mul_norm_of_inner_eq_zero, deriv_sin, sin_eq_one_iff, sin_mem_Icc, sin_add_int_mul_two_pi, Angle.sin_toReal, sin_pos_of_pos_of_le_one, cos_pi_div_two_sub, InnerProductGeometry.sin_angle_mul_norm_mul_norm, integral_sin_pow_antitone, intervalIntegrable_log_sin, sin_half_eq_sqrt, sin_eq_sqrt_one_sub_cos_sq, two_mul_sin_mul_sin, sin_le_mul, cos_two_mul', sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, Complex.sin_arg, Complex.exp_im, HasFDerivWithinAt.sin, fderiv_sin, integral_sin_pow_even, Quaternion.exp_eq, hasSum_L_function_mod_four_eval_three, sin_int_mul_pi, tan_eq_sin_div_cos, iteratedDerivWithin_sin_Ioo, two_mul_sin_mul_cos, Complex.cpow_ofReal, coe_sinOrderIso_apply, sin_eq_zero_iff_of_lt_of_lt, sin_pi_div_four, sin_arctan_lt_zero, Complex.norm_mul_sin_arg, sin_sq_pi_over_two_pow_succ, sin_sub_nat_mul_two_pi
sinh πŸ“–CompOp
128 mathmath: sinh_eq, sinh_log, exp_sub_sinh, sinh_add, measurable_sinh, HasDerivWithinAt.cosh, UpperHalfPlane.image_coe_sphere, sinh_nonneg_iff, sinh_surjective, differentiable_sinh, UpperHalfPlane.dist_le_iff_dist_coe_center_le, derivWithin_cosh, fderivWithin_sinh, hasStrictDerivAt_sinh, analyticWithinAt_sinh, abs_sinh, sinh_zero, hasSum_sinh, sinh_arcosh, analyticAt_sinh, tanh_eq_sinh_div_cosh, UpperHalfPlane.dist_eq_iff_eq_sinh, Differentiable.sinh, sinh_inj, ContDiffAt.sinh, deriv_sinh, UpperHalfPlane.dist_eq_iff_eq_sq_sinh, UpperHalfPlane.image_coe_ball, sinh_sub_id_strictMono, UpperHalfPlane.image_coe_closedBall, self_lt_sinh_iff, UpperHalfPlane.dist_coe_center, iteratedDeriv_add_one_cosh, sinh_lt_self_iff, iteratedDeriv_add_one_sinh, HasDerivAt.cosh, UpperHalfPlane.lt_dist_iff_lt_dist_coe_center, sinh_arsinh, Measurable.sinh, hasStrictDerivAt_cosh, HasStrictDerivAt.cosh, sinhEquiv_apply, UpperHalfPlane.dist_lt_iff_dist_coe_center_lt, cosh_sq, sinh_eq_tsum, sinh_neg, iteratedDerivWithin_sinh_Icc, sinh_eq_zero, Polynomial.Chebyshev.S_two_mul_real_cosh, exp_mul_le_cosh_add_mul_sinh, HasDerivAt.sinh, sinh_sq, sinh_sub, exp_sub_cosh, ContDiffWithinAt.sinh, iteratedDeriv_odd_sinh, DifferentiableOn.sinh, deriv_sinh, HasFDerivWithinAt.sinh, continuous_sinh, UpperHalfPlane.dist_eq_iff_dist_coe_center_eq, UpperHalfPlane.cmp_dist_eq_cmp_dist_coe_center, Complex.sinh_ofReal_re, sinh_two_mul, sinhOrderIso_apply, cosh_add_sinh, self_le_sinh_iff, HasFDerivAt.sinh, UpperHalfPlane.le_dist_iff_le_dist_coe_center, sinh_lt_sinh, HasDerivWithinAt.sinh, UpperHalfPlane.dist_center_dist, cosh_sub, sinh_sub_cosh, iteratedDeriv_odd_cosh, hasDerivAt_cosh, iteratedDerivWithin_sinh_Ioo, iteratedDeriv_even_sinh, contDiff_sinh, fderiv_sinh, Complex.ofReal_sinh, AEMeasurable.sinh, UpperHalfPlane.sinh_half_dist_add_dist, sinh_neg_iff, sinh_lt_cosh, cosh_sq', Polynomial.Chebyshev.U_real_cosh, sinh_strictMono, HasStrictDerivAt.sinh, cosh_sub_sinh, DifferentiableAt.sinh, sinh_add_cosh, sinh_injective, analyticOn_sinh, differentiableAt_sinh, differentiable_iteratedDeriv_sinh, fderivWithin_cosh, ContDiff.sinh, UpperHalfPlane.sinh_half_dist, UpperHalfPlane.dist_le_iff_le_sinh, sinh_pos_iff, arsinh_sinh, UpperHalfPlane.dist_coe_center_sq, sinh_le_sinh, HasStrictFDerivAt.cosh, analyticOnNhd_sinh, cosh_sq_sub_sinh_sq, fderiv_cosh, HasStrictFDerivAt.sinh, sinh_three_mul, HasFDerivAt.cosh, derivWithin_sinh, cosh_add, hasDerivAt_sinh, deriv_cosh, DifferentiableWithinAt.sinh, sinh_nonpos_iff, cosh_two_mul, sinh_artanh, Mathlib.Meta.Positivity.sinh_pos_of_pos, deriv_cosh, sinh_bijective, sinhHomeomorph_apply, Mathlib.Meta.Positivity.sinh_nonneg_of_nonneg, ContDiffOn.sinh, HasFDerivWithinAt.cosh, isEquivalent_sinh, sinh_le_self_iff
tan πŸ“–CompOp
91 mathmath: tan_pi_div_four, tan_pi_sub, tan_nonpos_of_nonpos_of_neg_pi_div_two_le, tan_inv_eq_cot, tan_int_mul_pi, le_tan, continuousAt_tan, tan_sub', contDiffAt_tan, InnerProductGeometry.tan_angle_sub_mul_norm_of_inner_eq_zero, tan_arccos, tan_int_mul_pi_div_two, Complex.tan_arg, InnerProductGeometry.tan_angle_add_mul_norm_of_inner_eq_zero, tan_neg, continuous_tan, tan_neg_of_neg_of_pi_div_two_lt, tan_nat_mul_pi_sub, Complex.tan_ofReal_re, tan_two_mul, one_add_tan_sq_mul_cos_sq_eq_one, inv_one_add_tan_sq, tan_div_sqrt_one_add_tan_sq, EuclideanGeometry.dist_div_tan_angle_of_angle_eq_pi_div_two, tan_pi_div_two, coe_tanPartialHomeomorph, isAlgebraic_tan_rat_mul_pi, hasDerivAt_tan, tan_add, deriv_tan_sub_id, tan_sub_pi, InnerProductGeometry.norm_div_tan_angle_sub_of_inner_eq_zero, tan_sq_div_one_add_tan_sq, injOn_tan, tan_lt_tan_of_nonneg_of_lt_pi_div_two, tan_lt_tan_of_lt_of_lt_pi_div_two, InnerProductGeometry.norm_div_tan_angle_add_of_inner_eq_zero, InnerProductGeometry.tan_angle_sub_of_inner_eq_zero, tan_pi_div_two_sub, tan_eq_one_sub_tan_half_sq_div_one_add_tan_half_sq, InnerProductGeometry.tan_angle_add_of_inner_eq_zero, tan_periodic, lt_tan, tan_nat_mul_pi, tan_add_int_mul_pi, tan_pi_div_six, EuclideanGeometry.tan_angle_of_angle_eq_pi_div_two, tendsto_abs_tan_of_cos_eq_zero, differentiableAt_tan, tan_nonneg_of_nonneg_of_le_pi_div_two, tendsto_tan_pi_div_two, inv_sqrt_one_add_tan_sq, cos_eq_two_mul_tan_half_div_one_sub_tan_half_sq, image_tan_Ioo, EuclideanGeometry.tan_angle_mul_dist_of_angle_eq_pi_div_two, tan_add', tendsto_tan_neg_pi_div_two, tan_int_mul_pi_sub, differentiableAt_tan_of_mem_Ioo, tan_pi_div_three, tan_eq_zero_iff, tan_mul_cos, continuousOn_tan, hasDerivAt_tan_of_mem_Ioo, tan_surjective, tan_sub_nat_mul_pi, tendsto_abs_tan_atTop, tan_arctan, tan_eq_zero_of_cos_eq_zero, hasStrictDerivAt_tan, tan_add_nat_mul_pi, strictMonoOn_tan, tan_sub, logDeriv_cos, tan_arcsin, surjOn_tan, tan_pi, Angle.tan_toReal, cot_inv_eq_tan, tan_sub_int_mul_pi, deriv_tan, tan_zero, arctan_tan, sin_eq_two_mul_tan_half_div_one_add_tan_half_sq, tan_pos_of_pos_of_lt_pi_div_two, tan_eq_zero_iff', tan_eq_sin_div_cos, tan_add_pi, Complex.ofReal_tan, continuousOn_tan_Ioo, Angle.tan_coe
tanh πŸ“–CompOp
19 mathmath: abs_tanh_lt_one, Complex.ofReal_tanh, tanh_eq_sinh_div_cosh, tanh_arcosh, neg_one_lt_tanh, Complex.tanh_ofReal_re, tanh_artanh, tanh_lt_one, tanh_eq, tanh_sq_lt_one, UpperHalfPlane.tanh_half_dist, tanh_arsinh, tanh_zero, tanh_injective, logDeriv_cosh, tanh_surjOn, tanh_neg, tanh_bijOn, artanh_tanh

Theorems

NameKindAssumesProvesValidatesDepends On
abs_cos_eq_sqrt_one_sub_sin_sq πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
cos
sqrt
instSub
instOne
Monoid.toNatPow
instMonoid
sin
β€”cos_sq'
sqrt_sq_eq_abs
abs_cos_le_one πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
cos
instOne
β€”abs_le_one_iff_mul_self_le_one
instIsStrictOrderedRing
abs_sin_eq_sqrt_one_sub_cos_sq πŸ“–mathematicalβ€”abs
Real
lattice
instAddGroup
sin
sqrt
instSub
instOne
Monoid.toNatPow
instMonoid
cos
β€”sin_sq
sqrt_sq_eq_abs
abs_sin_le_one πŸ“–mathematicalβ€”Real
instLE
abs
lattice
instAddGroup
sin
instOne
β€”abs_le_one_iff_mul_self_le_one
instIsStrictOrderedRing
abs_tanh_lt_one πŸ“–mathematicalβ€”Real
instLT
abs
lattice
instAddGroup
tanh
instOne
β€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
neg_one_lt_tanh
tanh_lt_one
cos_abs πŸ“–mathematicalβ€”cos
abs
Real
lattice
instAddGroup
β€”le_total
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cos_neg
abs_of_nonneg
cos_add πŸ“–mathematicalβ€”cos
Real
instAdd
instSub
instMul
sin
β€”Complex.ofReal_injective
Complex.ofReal_cos
Complex.ofReal_add
Complex.cos_add
Complex.ofReal_sub
Complex.ofReal_mul
Complex.ofReal_sin
cos_add_cos πŸ“–mathematicalβ€”Real
instAdd
cos
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
instSub
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_add
Complex.ofReal_cos
Complex.cos_add_cos
Complex.ofReal_mul
Complex.ofReal_div
Complex.ofReal_sub
cos_bound πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
cos
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sub
Complex.ofReal_div
Complex.ofReal_pow
Complex.cos_bound
Complex.norm_real
cos_le_one πŸ“–mathematicalβ€”Real
instLE
cos
instOne
β€”abs_le
instIsOrderedAddMonoid
abs_cos_le_one
cos_neg πŸ“–mathematicalβ€”cos
Real
instNeg
β€”Complex.ofReal_neg
Complex.cos_neg
cos_one_le πŸ“–mathematicalβ€”Real
instLE
cos
instOne
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
abs_sub_le_iff
cos_bound
abs_one
instIsOrderedRing
Mathlib.Meta.NormNum.isRat_le_true
instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_abs_nonneg
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_sub
cos_one_pos πŸ“–mathematicalβ€”Real
instLT
instZero
cos
instOne
β€”cos_pos_of_le_one
le_of_eq
abs_one
instIsOrderedRing
cos_pos_of_le_one πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instLT
instZero
cos
β€”Nat.instAtLeastTwoHAddOfNat
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_sub_iff_add_lt
add_le_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
pow_le_oneβ‚€
IsOrderedRing.toPosMulMono
abs_nonneg
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
sq
abs_mul_self
abs_mul
mul_le_oneβ‚€
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_inv_pos
sub_le_comm
abs_sub_le_iff
cos_bound
cos_sq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cos
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_pow
Complex.ofReal_cos
Complex.cos_sq
one_div
Complex.ofReal_add
Complex.ofReal_inv
Complex.ofReal_div
Complex.ofReal_mul
cos_sq' πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cos
instSub
instOne
sin
β€”sin_sq_add_cos_sq
add_sub_cancel_left
cos_sq_add_sin_sq πŸ“–mathematicalβ€”Real
instAdd
Monoid.toNatPow
instMonoid
cos
sin
instOne
β€”add_comm
sin_sq_add_cos_sq
cos_sq_le_one πŸ“–mathematicalβ€”Real
instLE
Monoid.toNatPow
instMonoid
cos
instOne
β€”sin_sq_add_cos_sq
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
cos_sub πŸ“–mathematicalβ€”cos
Real
instSub
instAdd
instMul
sin
β€”sub_eq_add_neg
cos_add
cos_neg
sin_neg
mul_neg
neg_neg
cos_sub_cos πŸ“–mathematicalβ€”Real
instSub
cos
instMul
instNeg
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sub
Complex.ofReal_cos
Complex.cos_sub_cos
neg_mul
Complex.ofReal_neg
Complex.ofReal_mul
Complex.ofReal_sin
Complex.ofReal_div
Complex.ofReal_add
cos_three_mul πŸ“–mathematicalβ€”cos
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_cos
Complex.ofReal_mul
Complex.cos_three_mul
Complex.ofReal_sub
Complex.ofReal_pow
cos_two_mul πŸ“–mathematicalβ€”cos
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
instMonoid
instOne
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_cos
Complex.ofReal_mul
Complex.cos_two_mul
Complex.ofReal_sub
Complex.ofReal_pow
cos_two_mul' πŸ“–mathematicalβ€”cos
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
instMonoid
sin
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_cos
Complex.ofReal_mul
Complex.cos_two_mul'
Complex.ofReal_sub
Complex.ofReal_pow
Complex.ofReal_sin
cos_two_neg πŸ“–mathematicalβ€”Real
instLT
cos
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instZero
β€”Nat.instAtLeastTwoHAddOfNat
mul_one
cos_two_mul
sub_le_sub_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
instIsOrderedRing
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
LT.lt.le
cos_one_pos
cos_one_le
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isRat_lt_true
instIsStrictOrderedRing
DivisionRing.toNontrivial
Mathlib.Meta.NormNum.isRat_sub
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Nat.cast_one
Nat.cast_zero
cos_zero πŸ“–mathematicalβ€”cos
Real
instZero
instOne
β€”Complex.cos_zero
cosh_abs πŸ“–mathematicalβ€”cosh
abs
Real
lattice
instAddGroup
β€”le_total
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cosh_neg
abs_of_nonneg
cosh_add πŸ“–mathematicalβ€”cosh
Real
instAdd
instMul
sinh
β€”Complex.ofReal_cosh
Complex.ofReal_add
Complex.cosh_add
Complex.ofReal_mul
Complex.ofReal_sinh
cosh_add_sinh πŸ“–mathematicalβ€”Real
instAdd
cosh
sinh
exp
β€”Complex.ofReal_add
Complex.ofReal_cosh
Complex.ofReal_sinh
Complex.cosh_add_sinh
Complex.ofReal_exp
cosh_eq πŸ“–mathematicalβ€”cosh
Real
DivInvMonoid.toDiv
instDivInvMonoid
instAdd
exp
instNeg
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”eq_div_of_mul_eq
Nat.instAtLeastTwoHAddOfNat
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
cosh.eq_1
exp.eq_1
Complex.ofReal_neg
Complex.cosh.eq_1
mul_two
Complex.add_re
div_mul_cancelβ‚€
two_ne_zero'
Complex.instCharZero
cosh_neg πŸ“–mathematicalβ€”cosh
Real
instNeg
β€”Complex.ofReal_cosh
Complex.ofReal_neg
Complex.cosh_neg
cosh_pos πŸ“–mathematicalβ€”Real
instLT
instZero
cosh
β€”Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
add_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exp_pos
cosh_eq
cosh_sq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cosh
instAdd
sinh
instOne
β€”Complex.ofReal_pow
Complex.ofReal_cosh
Complex.cosh_sq
Complex.ofReal_add
Complex.ofReal_sinh
cosh_sq' πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
cosh
instAdd
instOne
sinh
β€”cosh_sq
add_comm
cosh_sq_sub_sinh_sq πŸ“–mathematicalβ€”Real
instSub
Monoid.toNatPow
instMonoid
cosh
sinh
instOne
β€”Complex.ofReal_sub
Complex.ofReal_pow
Complex.ofReal_cosh
Complex.ofReal_sinh
Complex.cosh_sq_sub_sinh_sq
cosh_sub πŸ“–mathematicalβ€”cosh
Real
instSub
instMul
sinh
β€”sub_eq_add_neg
cosh_add
cosh_neg
sinh_neg
mul_neg
cosh_sub_sinh πŸ“–mathematicalβ€”Real
instSub
cosh
sinh
exp
instNeg
β€”Complex.ofReal_sub
Complex.ofReal_cosh
Complex.ofReal_sinh
Complex.cosh_sub_sinh
Complex.ofReal_exp
Complex.ofReal_neg
cosh_three_mul πŸ“–mathematicalβ€”cosh
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_cosh
Complex.ofReal_mul
Complex.cosh_three_mul
Complex.ofReal_sub
Complex.ofReal_pow
cosh_two_mul πŸ“–mathematicalβ€”cosh
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
Monoid.toNatPow
instMonoid
sinh
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_cosh
Complex.ofReal_mul
Complex.cosh_two_mul
Complex.ofReal_add
Complex.ofReal_pow
Complex.ofReal_sinh
cosh_zero πŸ“–mathematicalβ€”cosh
Real
instZero
instOne
β€”Complex.cosh_zero
cot_eq_cos_div_sin πŸ“–mathematicalβ€”cot
Real
DivInvMonoid.toDiv
instDivInvMonoid
cos
sin
β€”Complex.ofReal_injective
Complex.ofReal_cot
Complex.ofReal_div
Complex.ofReal_cos
Complex.ofReal_sin
cot_inv_eq_tan πŸ“–mathematicalβ€”Real
instInv
cot
tan
β€”Complex.ofReal_injective
Complex.ofReal_inv
Complex.ofReal_cot
Complex.cot_inv_eq_tan
Complex.ofReal_tan
exp_sub_cosh πŸ“–mathematicalβ€”Real
instSub
exp
cosh
sinh
β€”sub_eq_iff_eq_add
sinh_add_cosh
exp_sub_sinh πŸ“–mathematicalβ€”Real
instSub
exp
sinh
cosh
β€”sub_eq_iff_eq_add
cosh_add_sinh
inv_one_add_tan_sq πŸ“–mathematicalβ€”Real
instInv
instAdd
instOne
Monoid.toNatPow
instMonoid
tan
cos
β€”Complex.ofReal_inv
Complex.ofReal_add
Complex.ofReal_pow
Complex.ofReal_tan
Complex.ofReal_cos
Complex.inv_one_add_tan_sq
inv_sqrt_one_add_tan_sq πŸ“–mathematicalReal
instLT
instZero
cos
instInv
sqrt
instAdd
instOne
Monoid.toNatPow
instMonoid
tan
β€”sqrt_sq
LT.lt.le
sqrt_inv
inv_one_add_tan_sq
LT.lt.ne'
neg_one_le_cos πŸ“–mathematicalβ€”Real
instLE
instNeg
instOne
cos
β€”abs_le
instIsOrderedAddMonoid
abs_cos_le_one
neg_one_le_sin πŸ“–mathematicalβ€”Real
instLE
instNeg
instOne
sin
β€”abs_le
instIsOrderedAddMonoid
abs_sin_le_one
neg_one_lt_tanh πŸ“–mathematicalβ€”Real
instLT
instNeg
instOne
tanh
β€”tanh_eq
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exp_pos
one_mul
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_pos
instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
one_add_tan_sq_mul_cos_sq_eq_one πŸ“–mathematicalβ€”Real
instMul
instAdd
instOne
Monoid.toNatPow
instMonoid
tan
cos
β€”Nat.cast_one
Complex.one_add_tan_sq_mul_cos_sq_eq_one
Nat.cast_zero
sin_add πŸ“–mathematicalβ€”sin
Real
instAdd
instMul
cos
β€”Complex.ofReal_injective
Complex.ofReal_sin
Complex.ofReal_add
Complex.sin_add
Complex.ofReal_mul
Complex.ofReal_cos
sin_add_sin πŸ“–mathematicalβ€”Real
instAdd
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
cos
instSub
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_add
Complex.ofReal_sin
Complex.sin_add_sin
Complex.ofReal_mul
Complex.ofReal_div
Complex.ofReal_cos
Complex.ofReal_sub
sin_bound πŸ“–mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
instSub
sin
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instMul
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sub
Complex.ofReal_div
Complex.ofReal_pow
Complex.sin_bound
Complex.norm_real
sin_le_one πŸ“–mathematicalβ€”Real
instLE
sin
instOne
β€”abs_le
instIsOrderedAddMonoid
abs_sin_le_one
sin_neg πŸ“–mathematicalβ€”sin
Real
instNeg
β€”Complex.ofReal_neg
Complex.sin_neg
sin_pos_of_pos_of_le_one πŸ“–mathematicalReal
instLT
instZero
instLE
instOne
sinβ€”Nat.instAtLeastTwoHAddOfNat
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_sub_iff_add_lt
add_le_add
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
pow_le_pow_of_le_one
IsOrderedRing.toPosMulMono
abs_nonneg
abs_of_nonneg
le_of_lt
pow_one
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toCharZero
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
sub_le_comm
abs_sub_le_iff
sin_bound
sin_pos_of_pos_of_le_two πŸ“–mathematicalReal
instLT
instZero
instLE
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sinβ€”Nat.instAtLeastTwoHAddOfNat
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
instIsOrderedRing
instNontrivial
one_mul
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
sin_pos_of_pos_of_le_one
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
cos_pos_of_le_one
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_of_lt
sin_two_mul
two_mul
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
sin_sq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
instSub
instOne
cos
β€”eq_sub_iff_add_eq
sin_sq_add_cos_sq
sin_sq_add_cos_sq πŸ“–mathematicalβ€”Real
instAdd
Monoid.toNatPow
instMonoid
sin
cos
instOne
β€”Complex.ofReal_injective
Complex.ofReal_add
Complex.ofReal_pow
Complex.ofReal_sin
Complex.ofReal_cos
Complex.sin_sq_add_cos_sq
sin_sq_eq_half_sub πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sin
instSub
DivInvMonoid.toDiv
instDivInvMonoid
instOne
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
instMul
β€”Nat.instAtLeastTwoHAddOfNat
sin_sq
cos_sq
sub_sub
sub_half
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
sin_sq_le_one πŸ“–mathematicalβ€”Real
instLE
Monoid.toNatPow
instMonoid
sin
instOne
β€”sin_sq_add_cos_sq
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
sin_sub πŸ“–mathematicalβ€”sin
Real
instSub
instMul
cos
β€”sub_eq_add_neg
sin_add
cos_neg
sin_neg
mul_neg
sin_sub_sin πŸ“–mathematicalβ€”Real
instSub
sin
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
cos
instAdd
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sub
Complex.ofReal_sin
Complex.sin_sub_sin
Complex.ofReal_mul
Complex.ofReal_div
Complex.ofReal_cos
Complex.ofReal_add
sin_three_mul πŸ“–mathematicalβ€”sin
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instSub
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sin
Complex.ofReal_mul
Complex.sin_three_mul
Complex.ofReal_sub
Complex.ofReal_pow
sin_two_mul πŸ“–mathematicalβ€”sin
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sin
Complex.ofReal_mul
Complex.sin_two_mul
Complex.ofReal_cos
sin_zero πŸ“–mathematicalβ€”sin
Real
instZero
β€”Complex.sin_zero
sinh_add πŸ“–mathematicalβ€”sinh
Real
instAdd
instMul
cosh
β€”Complex.ofReal_sinh
Complex.ofReal_add
Complex.sinh_add
Complex.ofReal_mul
Complex.ofReal_cosh
sinh_add_cosh πŸ“–mathematicalβ€”Real
instAdd
sinh
cosh
exp
β€”add_comm
cosh_add_sinh
sinh_eq πŸ“–mathematicalβ€”sinh
Real
DivInvMonoid.toDiv
instDivInvMonoid
instSub
exp
instNeg
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Complex.ofReal_injective
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sinh
Complex.ofReal_div
Complex.ofReal_sub
Complex.ofReal_exp
Complex.ofReal_neg
sinh_lt_cosh πŸ“–mathematicalβ€”Real
instLT
sinh
cosh
β€”lt_of_pow_lt_pow_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
LT.lt.le
cosh_pos
lt_add_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
cosh_sq
sinh_neg πŸ“–mathematicalβ€”sinh
Real
instNeg
β€”Complex.ofReal_neg
Complex.sinh_neg
sinh_sq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sinh
instSub
cosh
instOne
β€”Complex.ofReal_pow
Complex.ofReal_sinh
Complex.sinh_sq
Complex.ofReal_sub
Complex.ofReal_cosh
sinh_sub πŸ“–mathematicalβ€”sinh
Real
instSub
instMul
cosh
β€”sub_eq_add_neg
sinh_add
cosh_neg
sinh_neg
mul_neg
sinh_sub_cosh πŸ“–mathematicalβ€”Real
instSub
sinh
cosh
instNeg
exp
β€”neg_sub
cosh_sub_sinh
sinh_three_mul πŸ“–mathematicalβ€”sinh
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instAdd
Monoid.toNatPow
instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sinh
Complex.ofReal_mul
Complex.sinh_three_mul
Complex.ofReal_add
Complex.ofReal_pow
sinh_two_mul πŸ“–mathematicalβ€”sinh
Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cosh
β€”Nat.instAtLeastTwoHAddOfNat
Complex.ofReal_sinh
Complex.ofReal_mul
Complex.sinh_two_mul
Complex.ofReal_cosh
sinh_zero πŸ“–mathematicalβ€”sinh
Real
instZero
β€”Complex.sinh_zero
tan_div_sqrt_one_add_tan_sq πŸ“–mathematicalReal
instLT
instZero
cos
DivInvMonoid.toDiv
instDivInvMonoid
tan
sqrt
instAdd
instOne
Monoid.toNatPow
instMonoid
sin
β€”tan_mul_cos
LT.lt.ne'
inv_sqrt_one_add_tan_sq
div_eq_mul_inv
tan_eq_sin_div_cos πŸ“–mathematicalβ€”tan
Real
DivInvMonoid.toDiv
instDivInvMonoid
sin
cos
β€”Complex.ofReal_injective
Complex.ofReal_tan
Complex.ofReal_div
Complex.ofReal_sin
Complex.ofReal_cos
tan_inv_eq_cot πŸ“–mathematicalβ€”Real
instInv
tan
cot
β€”Complex.ofReal_injective
Complex.ofReal_inv
Complex.ofReal_tan
Complex.tan_inv_eq_cot
Complex.ofReal_cot
tan_mul_cos πŸ“–mathematicalβ€”Real
instMul
tan
cos
sin
β€”tan_eq_sin_div_cos
div_mul_cancelβ‚€
tan_neg πŸ“–mathematicalβ€”tan
Real
instNeg
β€”Complex.ofReal_neg
Complex.tan_neg
tan_sq_div_one_add_tan_sq πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
Monoid.toNatPow
instMonoid
tan
instAdd
instOne
sin
β€”div_eq_mul_inv
tan_mul_cos
mul_pow
inv_one_add_tan_sq
tan_zero πŸ“–mathematicalβ€”tan
Real
instZero
β€”Complex.tan_zero
tanh_eq πŸ“–mathematicalβ€”tanh
Real
DivInvMonoid.toDiv
instDivInvMonoid
instSub
exp
instNeg
instAdd
β€”tanh_eq_sinh_div_cosh
Nat.instAtLeastTwoHAddOfNat
sinh_eq
cosh_eq
div_div_div_cancel_rightβ‚€
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
tanh_eq_sinh_div_cosh πŸ“–mathematicalβ€”tanh
Real
DivInvMonoid.toDiv
instDivInvMonoid
sinh
cosh
β€”Complex.ofReal_tanh
Complex.ofReal_div
Complex.ofReal_sinh
Complex.ofReal_cosh
tanh_lt_one πŸ“–mathematicalβ€”Real
instLT
tanh
instOne
β€”tanh_eq
Mathlib.Tactic.FieldSimp.lt_eq_cancel_lt
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
LT.lt.ne'
add_pos'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
exp_pos
Mathlib.Tactic.FieldSimp.NF.cons_pos
instZeroLEOneClass
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
tanh_neg πŸ“–mathematicalβ€”tanh
Real
instNeg
β€”Complex.ofReal_neg
Complex.tanh_neg
tanh_sq_lt_one πŸ“–mathematicalβ€”Real
instLT
Monoid.toNatPow
instMonoid
tanh
instOne
β€”sq_lt_one_iff_abs_lt_one
instIsStrictOrderedRing
abs_tanh_lt_one
tanh_zero πŸ“–mathematicalβ€”tanh
Real
instZero
β€”Complex.tanh_zero
two_mul_cos_mul_cos πŸ“–mathematicalβ€”Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
cos
instAdd
instSub
β€”Nat.instAtLeastTwoHAddOfNat
cos_sub
cos_add
add_add_sub_cancel
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
two_mul_sin_mul_cos πŸ“–mathematicalβ€”Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
cos
instAdd
instSub
β€”Nat.instAtLeastTwoHAddOfNat
sin_sub
sin_add
sub_add_add_cancel
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
two_mul_sin_mul_sin πŸ“–mathematicalβ€”Real
instMul
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
sin
instSub
cos
instAdd
β€”Nat.instAtLeastTwoHAddOfNat
cos_sub
cos_add
add_sub_sub_cancel
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add

---

← Back to Index