UpperHalfPlane π | CompData | 360 mathmath: CuspFormClass.qExpansion_isBigO, ModularForm.coe_mul, UpperHalfPlane.mdifferentiable_num, ModularForm.mul_slash_SL2, ModularGroup.SLOnGLPos_smul_apply, ModularForm.smul_slash, CuspFormClass.holo, SlashInvariantForm.coe_prodEqualWeights, ModularFormClass.differentiableAt_comp_ofComplex, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, ModularFormClass.hasFPowerSeries_cuspFunction, CuspForm.toFun_eq_coe, qExpansion_eq_zero_iff, SlashInvariantForm.slash_action_eq', ModularForm.mul_slash, qExpansionRingHom_apply, CuspFormClass.zero_at_infty_comp_ofComplex, UpperHalfPlane.image_coe_sphere, ModularForm.constβ_apply, UpperHalfPlane.im_div_exp_dist_le, UpperHalfPlane.re_smul, OnePoint.isBoundedAt_iff_exists_SL2Z, UpperHalfPlane.isOpenEmbedding_coe, UpperHalfPlane.comp_ofComplex_of_im_pos, UpperHalfPlane.tendsto_smul_atImInfty, UpperHalfPlane.dist_le_iff_dist_coe_center_le, SlashInvariantForm.quotientFunc_mk, ModularForm.SL_slash, UpperHalfPlane.im_smul_eq_div_normSq, UpperHalfPlane.specialLinearGroup_apply, SlashInvariantForm.coe_constβ, SlashInvariantForm.smul_applyβ, UpperHalfPlane.canLift, ModularForm.coe_constβ, ModularForm.prod_slash, UpperHalfPlane.isometry_real_vadd, SlashInvariantForm.add_apply, CuspForm.zero_apply, ModularForm.norm_eq_zero_iff, Continuous.upperHalfPlaneMk, SlashInvariantFormClass.eq_cuspFunction, ModularForm.prod_slash_sum_weights, jacobiTheta_T_sq_smul, OnePoint.isBoundedAt_iff_forall_SL2Z, SlashInvariantForm.quotientFunc_smul, SlashInvariantForm.constβ_toFun, ModularGroup.sl_moeb, CuspFormClass.zero_at_cusps, SlashInvariantForm.one_coe_eq_one, OnePoint.isZeroAt_iff_exists_SL2Z, SlashInvariantForm.smul_apply, SlashInvariantForm.coe_smulβ, EisensteinSeries.E2_slash_action, UpperHalfPlane.isometry_vertical_line, CuspForm.coe_trace, UpperHalfPlane.glPos_smul_def, UpperHalfPlane.coe_pos_real_smul, ModularGroup.coe_T_zpow_smul_eq, UpperHalfPlane.comp_ofComplex, ModularForm.coe_neg, CuspForm.coeHom_apply, EisensteinSeries.G2_slash_action, SlashInvariantForm.const_toFun, UpperHalfPlane.denom_cocycle_Ο, UpperHalfPlane.mdifferentiable_inv_denom, ModularGroup.tendsto_abs_re_smul, UpperHalfPlane.dist_eq_iff_eq_sinh, SlashInvariantForm.coe_translate, UpperHalfPlane.ofComplex_apply_of_im_nonpos, UpperHalfPlane.dist_log_im_le, SlashInvariantForm.ext_iff, ModularGroup.exists_max_im, ModularFormClass.levelOne_neg_weight_eq_zero, ModularFormClass.continuous, UpperHalfPlane.im_le_im_mul_exp_dist, qExpansion_of_mul, UpperHalfPlane.contMDiff_coe, CuspForm.holo', UpperHalfPlane.vadd_re, UpperHalfPlane.dist_eq_iff_eq_sq_sinh, ModularGroup.im_T_smul, CuspFormClass.petersson_bounded_left, UpperHalfPlane.zero_form_isBoundedAtImInfty, UpperHalfPlane.instLocPathConnectedSpace, ModularForm.coe_natCast, UpperHalfPlane.image_coe_ball, cuspFunction_smul, UpperHalfPlane.contMDiff_inv_denom, ModularForm.coe_prodEqualWeights, UpperHalfPlane.dist_triangle, UpperHalfPlane.dist_of_re_eq, UpperHalfPlane.instT4Space, UpperHalfPlane.cosh_dist, UpperHalfPlane.image_coe_closedBall, EisensteinSeries.G2_S_transform, UpperHalfPlane.instNoncompactSpace, SlashInvariantForm.sub_apply, ModularGroup.SL_to_GL_tower, ModularForm.zero_apply, UpperHalfPlane.dist_coe_center, UpperHalfPlane.ofComplex_apply_of_im_pos, qExpansion_one, jacobiTheta_S_smul, CuspForm.coe_smul, UpperHalfPlane.instContractibleSpace, cuspFunction_neg, ModularGroup.re_T_smul, ModularForm.toSlashInvariantForm_coe, UpperHalfPlane.lt_dist_iff_lt_dist_coe_center, UpperHalfPlane.coe_smul_of_det_pos, CuspFormClass.zero_at_infty, CuspForm.coe_neg, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, UpperHalfPlane.dist_lt_iff_dist_coe_center_lt, SlashInvariantForm.exists_one_half_le_im_and_norm_le, EisensteinSeries.q_expansion_riemannZeta, SlashInvariantFormClass.periodic_comp_ofComplex, OnePoint.isZeroAt_iff_forall_SL2Z, UpperHalfPlane.contMDiff_num, UpperHalfPlane.mdifferentiable_denom, OnePoint.isBoundedAt_iff, ModularForm.one_coe_eq_one, UpperHalfPlane.im_smul, OnePoint.IsZeroAt.smul_iff, ModularGroup.normSq_S_smul_lt_one, ModularFormClass.exp_decay_sub_atImInfty, ModularForm.sub_apply, ModularFormClass.exists_petersson_le, UpperHalfPlane.coe_smul, ModularGroup.exists_row_one_eq_and_min_re, UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos, ModularForm.ext_iff, SlashInvariantForm.coe_sub, ModularForm.const_toFun, ModularGroup.re_T_zpow_smul, UpperHalfPlane.dist_eq, CuspForm.coe_translate, CuspFormClass.petersson_bounded_right, ModularFormClass.bdd_at_infty, OnePoint.IsZeroAt.add, ModularFormClass.exists_bound, ModularForm.neg_apply, ModularGroup.im_lt_im_S_smul, ModularForm.eq_const_of_weight_zero, qExpansion_sub, SlashInvariantForm.coe_prod, SlashInvariantForm.coe_natCast, UpperHalfPlane.ofComplex_apply_eq_ite, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, UpperHalfPlane.qParam_tendsto_atImInfty, UpperHalfPlane.dist_eq_iff_dist_coe_center_eq, ModularForm.coe_eq_zero_iff, ModularForm.coeHom_apply, ModularForm.slash_action_eq'_iff, UpperHalfPlane.pos_real_smul_injective, cuspFunction_mul, UpperHalfPlane.J_smul, SlashInvariantForm.slash_action_eqn'', UpperHalfPlane.cmp_dist_eq_cmp_dist_coe_center, ModularFormClass.qExpansion_coeff_zero, EisensteinSeries.eisensteinSeries_SIF_apply, CuspForm.coe_sub, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, CuspForm.neg_apply, UpperHalfPlane.le_dist_coe, ModularFormClass.differentiableAt_cuspFunction, ModularGroup.exists_one_half_le_im_smul, UpperHalfPlane.contMDiff_denom_zpow, qExpansion_add, UpperHalfPlane.petersson_slash_SL, UpperHalfPlane.le_dist_iff_le_dist_coe_center, SlashInvariantForm.toFun_eq_coe, ModularForm.SL_slash_def, UpperHalfPlane.ofComplex_apply, UpperHalfPlane.instLocallyCompactSpace, cuspFunction_add, SlashInvariantForm.coe_zero, UpperHalfPlane.coe_J_smul, ModularForm.IsGLPos.coe_smul, UpperHalfPlane.dist_comm, UpperHalfPlane.dist_center_dist, UpperHalfPlane.atImInfty_mem, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, UpperHalfPlane.dist_le_dist_coe_div_sqrt, OnePoint.IsBoundedAt.smul_iff, CuspFormClass.exists_bound, UpperHalfPlane.pos_real_re, UpperHalfPlane.IsZeroAtImInfty.zero_at_infty_comp_ofComplex, ModularForm.IsGLPos.smul_apply, SlashInvariantForm.coe_trace, UpperHalfPlane.eventuallyEq_coe_comp_ofComplex, SlashInvariantForm.coe_neg, CuspForm.ext_iff, SlashInvariantForm.slash_action_eqn_SL'', UpperHalfPlane.comp_ofComplex_of_im_le_zero, UpperHalfPlane.continuous_im, ModularFormClass.hasSum_qExpansion_of_abs_lt, UpperHalfPlane.atImInfty_basis, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, UpperHalfPlane.verticalStrip_anti_right, EisensteinSeries.q_expansion_bernoulli, UpperHalfPlane.coe_specialLinearGroup_apply, EisensteinSeries.D2_one, ModularFormClass.levelOne_weight_zero_const, ModularGroup.im_smul_eq_div_normSq, UpperHalfPlane.cosh_half_dist, UpperHalfPlane.exp_half_dist, ModularFormClass.qExpansion_coeff_eq_circleIntegral, UpperHalfPlane.vadd_right_cancel_iff, CuspForm.coe_zero, ModularForm.coe_prod, EisensteinSeries.tendsto_double_sum_S_act, ModularForm.smul_apply, UpperHalfPlane.coe_injective, qExpansion_neg, ModularForm.const_apply, OnePoint.IsBoundedAt.add, SlashInvariantForm.slash_S_apply, ModularForm.coe_intCast, UpperHalfPlane.verticalStrip_mono, UpperHalfPlane.sinh_half_dist_add_dist, ModularForm.coe_norm, UpperHalfPlane.instNeBotAtImInfty, ModularFormClass.qExpansion_isBigO, UpperHalfPlane.instT3Space, CuspForm.IsGLPos.smul_apply, qExpansion_mul, mdifferentiable_jacobiTheta, ModularForm.coe_add, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, cuspFunction_sub, CuspForm.sub_apply, ModularFormClass.bdd_at_cusps, ModularForm.coe_const, qExpansion_mul_coeff_zero, ModularForm.cuspFunction_mul, UpperHalfPlane.contMDiffAt_ofComplex, ModularForm.prod_fintype_slash, ModularFormClass.bounded_at_infty_comp_ofComplex, CuspFormClass.exp_decay_atImInfty', ModularForm.holo', CuspForm.IsGLPos.coe_smul, SlashInvariantForm.vAdd_width_periodic, UpperHalfPlane.coe_vadd, UpperHalfPlane.instSecondCountableTopology, ModularGroup.exists_smul_mem_fd, ModularFormClass.hasSum_qExpansion_of_norm_lt, ModularFormClass.bdd_at_infty_slash, ModularFormClass.cuspFunction_apply_zero, UpperHalfPlane.contMDiffAt_iff, UpperHalfPlane.instIsManifoldComplexModelWithCornersSelfTopWithTopENat, UpperHalfPlane.instProperSpace, CuspFormClass.cuspFunction_apply_zero, ModularForm.slash_def, UpperHalfPlane.instContinuousGLSMul, CuspFormClass.zero_at_infty_slash, ModularForm.is_invariant_one', EisensteinSeries.eisensteinSeriesSIF_apply, ModularGroup.im_T_inv_smul, UpperHalfPlane.mdifferentiable_coe, SlashInvariantFormClass.norm_petersson_smul, EisensteinSeries.eisSummand_extension_differentiableOn, ModularFormClass.analyticAt_cuspFunction_zero, UpperHalfPlane.modular_T_zpow_smul, SlashInvariantForm.coe_add, UpperHalfPlane.dist_coe_le, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, ModularFormClass.differentiableOn_cuspFunction_ball, ModularFormClass.holo, UpperHalfPlane.pos_real_im, UpperHalfPlane.sinh_half_dist, UpperHalfPlane.dist_le_iff_le_sinh, ModularForm.is_invariant_const, ModularForm.SL_slash_apply, UpperHalfPlane.dist_coe_center_sq, EisensteinSeries.eisSummand_SL2_apply, UpperHalfPlane.mem_verticalStrip_iff, UpperHalfPlane.tendsto_coe_atImInfty, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, UpperHalfPlane.instInfinite, SlashInvariantForm.slash_action_eqn', UpperHalfPlane.cosh_dist', SlashInvariantForm.coe_smul, ModularForm.qExpansion_mul, UpperHalfPlane.mdifferentiableAt_iff, UpperHalfPlane.IsZeroAtImInfty.slash, CuspFormClass.exp_decay_atImInfty, qExpansion_zero, UpperHalfPlane.tanh_half_dist, ModularForm.coe_translate, ModularForm.coe_smul, UpperHalfPlane.neg_smul, ModularForm.coe_sub, ModularForm.toFun_eq_coe, SlashInvariantFormClass.petersson_smul, SlashInvariantForm.neg_apply, UpperHalfPlane.verticalStrip_mono_left, ModularForm.coe_trace, UpperHalfPlane.range_coe, SlashInvariantForm.coe_const, SlashInvariantForm.coeHom_injective, EisensteinSeries.eisensteinSeries_slash_apply, SlashInvariantForm.coe_mul, ModularFormClass.qExpansionFormalMultilinearSeries_coeff, ModularForm.coe_zero, UpperHalfPlane.contMDiff_smul, UpperHalfPlane.tendsto_comap_im_ofComplex, UpperHalfPlane.contMDiff_denom, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, UpperHalfPlane.isometry_pos_mul, qExpansion_of_pow, OnePoint.isZeroAt_iff, ModularForm.add_apply, qExpansion_smul, UpperHalfPlane.mdifferentiable_denom_zpow, SlashInvariantFormClass.slash_action_eq, SlashInvariantForm.slash_action_eqn, ModularFormClass.hasSum_qExpansion, ModularFormClass.qExpansion_coeff_eq_intervalIntegral, ModularGroup.SL_neg_smul, UpperHalfPlane.continuous_coe, UpperHalfPlane.mdifferentiable_iff, ModularFormClass.exp_decay_sub_atImInfty', UpperHalfPlane.isEmbedding_coe, SlashInvariantForm.vAdd_apply_of_mem_strictPeriods, ModularForm.is_invariant_one, ModularForm.mul_coe, EisensteinSeries.D2_T, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, UpperHalfPlane.mdifferentiableAt_ofComplex, SlashInvariantForm.coe_norm, EisensteinSeries.D2_mul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.vadd_im, CuspForm.coe_add, CuspForm.toSlashInvariantForm_coe, CuspForm.smul_apply, UpperHalfPlane.instNontrivial, UpperHalfPlane.modular_T_smul, UpperHalfPlane.IsBoundedAtImInfty.slash, SlashInvariantForm.coe_intCast, ModularGroup.smul_eq_lcRow0_add, UpperHalfPlane.vadd_left_injective, ModularForm.constβ_toFun, ModularForm.SL_smul_slash, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, UpperHalfPlane.mdifferentiable_smul, ModularForm.slash_apply, ModularGroup.isCompact_truncatedFundamentalDomain, EisensteinSeries.G2_T_transform, CuspForm.add_apply, UpperHalfPlane.petersson_slash, ModularGroup.coe_truncatedFundamentalDomain, UpperHalfPlane.continuous_re
|