Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Analysis/Complex/UpperHalfPlane/Basic.lean

Statistics

MetricCount
DefinitionsevalUpperHalfPlaneCoe, evalUpperHalfPlaneIm, UpperHalfPlane, I, im, instAddActionReal, instCoeOutComplex, instInhabited, posRealAction, re, termℍ, upperHalfPlaneSet
12
TheoremsI_im, I_re, canLift, coe_I, coe_im, coe_im_pos, coe_inj, coe_injective, coe_mk, coe_mk_subtype, coe_pos_real_smul, coe_re, coe_vadd, exists, ext, ext', ext_iff, ext_iff', ext_re_im, forall, im_inv_neg_coe_pos, im_ne_zero, im_pnat_div_pos, im_pos, instInfinite, instNontrivial, isOpen_upperHalfPlaneSet, mk_coe, mk_im, mk_re, ne_int, ne_intCast, ne_nat, ne_natCast, ne_ofReal, ne_zero, normSq_ne_zero, normSq_pos, pos_real_im, pos_real_re, pos_real_smul_injective, range_coe, re_add_im, vadd_im, vadd_left_injective, vadd_re, vadd_right_cancel_iff
47
Total59

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalUpperHalfPlaneCoe πŸ“–CompOpβ€”
evalUpperHalfPlaneIm πŸ“–CompOpβ€”

UpperHalfPlane

Definitions

NameCategoryTheorems
I πŸ“–CompOp
3 mathmath: coe_I, I_re, I_im
im πŸ“–CompOp
69 mathmath: image_coe_sphere, im_div_exp_dist_le, dist_le_iff_dist_coe_center_le, im_pos, im_smul_eq_div_normSq, EisensteinSeries.r1_aux_bound, re_add_im, dist_eq_iff_eq_sinh, dist_log_im_le, ModularGroup.exists_max_im, im_le_im_mul_exp_dist, dist_eq_iff_eq_sq_sinh, ModularGroup.im_T_smul, image_coe_ball, dist_of_re_eq, center_im, cosh_dist, image_coe_closedBall, dist_coe_center, IsZeroAtImInfty.petersson_exp_decay_left, lt_dist_iff_lt_dist_coe_center, dist_lt_iff_dist_coe_center_lt, SlashInvariantForm.exists_one_half_le_im_and_norm_le, dist_self_center, im_smul, ModularFormClass.exp_decay_sub_atImInfty, ModularFormClass.exists_petersson_le, IsZeroAtImInfty.exp_decay_atImInfty, dist_eq, ModularFormClass.exists_bound, ModularGroup.im_lt_im_S_smul, ModularGroup.im_T_zpow_smul, dist_eq_iff_dist_coe_center_eq, cmp_dist_eq_cmp_dist_coe_center, EisensteinSeries.r1_eq, le_dist_coe, ModularGroup.exists_one_half_le_im_smul, le_dist_iff_le_dist_coe_center, dist_center_dist, dist_le_dist_coe_div_sqrt, CuspFormClass.exists_bound, continuous_im, atImInfty_basis, ModularGroup_T_zpow_mem_verticalStrip, ModularGroup.im_smul_eq_div_normSq, cosh_half_dist, exp_half_dist, mk_im, sinh_half_dist_add_dist, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, CuspFormClass.exp_decay_atImInfty', ModularGroup.three_le_four_mul_im_sq_of_mem_fd, IsZeroAtImInfty.exp_decay_atImInfty', ModularGroup.im_T_inv_smul, dist_coe_le, pos_real_im, sinh_half_dist, dist_le_iff_le_sinh, dist_coe_center_sq, mem_verticalStrip_iff, I_im, cosh_dist', CuspFormClass.exp_decay_atImInfty, ModularGroup.three_lt_four_mul_im_sq_of_mem_fdo, coe_im, IsZeroAtImInfty.petersson_exp_decay_right, c_mul_im_sq_le_normSq_denom, ModularFormClass.exp_decay_sub_atImInfty', vadd_im
instAddActionReal πŸ“–CompOp
12 mathmath: isometry_real_vadd, vadd_re, exists_SL2_smul_eq_of_apply_zero_one_ne_zero, exists_SL2_smul_eq_of_apply_zero_one_eq_zero, vadd_right_cancel_iff, SlashInvariantForm.vAdd_width_periodic, coe_vadd, modular_T_zpow_smul, SlashInvariantForm.vAdd_apply_of_mem_strictPeriods, vadd_im, modular_T_smul, vadd_left_injective
instCoeOutComplex πŸ“–CompOpβ€”
instInhabited πŸ“–CompOp
2 mathmath: ofComplex_apply_of_im_nonpos, ofComplex_apply_eq_ite
posRealAction πŸ“–CompOp
7 mathmath: coe_pos_real_smul, exists_SL2_smul_eq_of_apply_zero_one_ne_zero, pos_real_smul_injective, exists_SL2_smul_eq_of_apply_zero_one_eq_zero, pos_real_re, pos_real_im, isometry_pos_mul
re πŸ“–CompOp
19 mathmath: re_smul, center_re, EisensteinSeries.r1_aux_bound, re_add_im, ModularGroup.tendsto_abs_re_smul, vadd_re, ModularGroup.re_T_smul, ModularGroup.re_T_inv_smul, ModularGroup.exists_row_one_eq_and_min_re, ModularGroup.re_T_zpow_smul, EisensteinSeries.r1_eq, pos_real_re, ModularGroup.abs_two_mul_re_lt_one_of_mem_fdo, I_re, coe_re, mem_verticalStrip_iff, cosh_dist', mk_re, continuous_re
termℍ πŸ“–CompOpβ€”
upperHalfPlaneSet πŸ“–CompOp
11 mathmath: summableLocallyUniformlyOn_iteratedDerivWithin_cexp, iteratedDerivWithin_tsum_cexp_eq, differentiableOn_iteratedDerivWithin_cotTerm, summableLocallyUniformlyOn_iteratedDerivWithin_cotTerm, eqOn_iteratedDerivWithin_cotTerm_upperHalfPlaneSet, contDiffOn_tsum_cexp, cot_pi_mul_contDiffWithinAt, range_coe, summableLocallyUniformlyOn_iteratedDerivWithin_smul_cexp, isOpen_upperHalfPlaneSet, ModularForm.multipliableLocallyUniformlyOn_eta

Theorems

NameKindAssumesProvesValidatesDepends On
I_im πŸ“–mathematicalβ€”im
I
Real
Real.instOne
β€”β€”
I_re πŸ“–mathematicalβ€”re
I
Real
Real.instZero
β€”β€”
canLift πŸ“–mathematicalβ€”CanLift
Complex
UpperHalfPlane
coe
Real
Real.instLT
Real.instZero
Complex.im
β€”β€”
coe_I πŸ“–mathematicalβ€”coe
I
Complex.I
β€”β€”
coe_im πŸ“–mathematicalβ€”Complex.im
coe
im
β€”β€”
coe_im_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Complex.im
coe
β€”β€”
coe_inj πŸ“–mathematicalβ€”coeβ€”ext_iff
coe_injective πŸ“–mathematicalβ€”UpperHalfPlane
Complex
coe
β€”ext
coe_mk πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
coeβ€”β€”
coe_mk_subtype πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
coeβ€”β€”
coe_pos_real_smul πŸ“–mathematicalβ€”coe
Real
Real.instLT
Real.instZero
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Positive.instMonoidSubtypeLtOfNat
Real.semiring
Real.partialOrder
Real.instIsStrictOrderedRing
MulAction.toSemigroupAction
posRealAction
Complex
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
Real.normedField
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
Complex.instRCLike
β€”Real.instIsStrictOrderedRing
coe_re πŸ“–mathematicalβ€”Complex.re
coe
re
β€”β€”
coe_vadd πŸ“–mathematicalβ€”coe
HVAdd.hVAdd
Real
UpperHalfPlane
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
Complex
Complex.instAdd
Complex.ofReal
β€”β€”
exists πŸ“–β€”β€”β€”β€”β€”
ext πŸ“–β€”coeβ€”β€”β€”
ext' πŸ“–β€”re
im
β€”β€”ext_re_im
ext_iff πŸ“–mathematicalβ€”coeβ€”ext
ext_iff' πŸ“–mathematicalβ€”coeβ€”β€”
ext_re_im πŸ“–β€”re
im
β€”β€”ext
Complex.ext
forall πŸ“–β€”β€”β€”β€”coe_im_pos
im_inv_neg_coe_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Complex.im
Complex
Complex.instInv
Complex.instNeg
coe
β€”inv_neg
Complex.inv_im
neg_div
neg_neg
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
normSq_pos
im_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
im_pos
im_pnat_div_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Complex.im
Complex
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNeg
Complex.instNatCast
coe
β€”normSq_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
im_pos
neg_div
Complex.div_im
MulZeroClass.zero_mul
zero_div
zero_sub
neg_neg
im_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
im
β€”coe_im_pos
instInfinite πŸ“–mathematicalβ€”Infinite
UpperHalfPlane
β€”Infinite.of_injective
NoMinOrder.infinite
instNoMinOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
vadd_left_injective
instNontrivial πŸ“–mathematicalβ€”Nontrivial
UpperHalfPlane
β€”Infinite.instNontrivial
instInfinite
isOpen_upperHalfPlaneSet πŸ“–mathematicalβ€”IsOpen
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
upperHalfPlaneSet
β€”isOpen_lt
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_const
Complex.continuous_im
mk_coe πŸ“–β€”Real
Real.instLT
Real.instZero
Complex.im
coe
coe_im_pos
β€”β€”β€”
mk_im πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
imβ€”β€”
mk_re πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
re
Complex.re
β€”β€”
ne_int πŸ“–β€”β€”β€”β€”ne_intCast
ne_intCast πŸ“–β€”β€”β€”β€”ne_ofReal
ne_nat πŸ“–β€”β€”β€”β€”ne_natCast
ne_natCast πŸ“–β€”β€”β€”β€”Int.cast_natCast
ne_intCast
ne_ofReal πŸ“–β€”β€”β€”β€”β€”
ne_zero πŸ“–β€”β€”β€”β€”im_ne_zero
normSq_ne_zero πŸ“–β€”β€”β€”β€”LT.lt.ne'
normSq_pos
normSq_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
DFunLike.coe
MonoidWithZeroHom
Complex
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Complex.instSemiring
Real.semiring
MonoidWithZeroHom.funLike
Complex.normSq
coe
β€”Complex.normSq_pos
ne_zero
pos_real_im πŸ“–mathematicalβ€”im
Real
Real.instLT
Real.instZero
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Positive.instMonoidSubtypeLtOfNat
Real.semiring
Real.partialOrder
Real.instIsStrictOrderedRing
MulAction.toSemigroupAction
posRealAction
Real.instMul
β€”Complex.smul_im
pos_real_re πŸ“–mathematicalβ€”re
Real
Real.instLT
Real.instZero
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Positive.instMonoidSubtypeLtOfNat
Real.semiring
Real.partialOrder
Real.instIsStrictOrderedRing
MulAction.toSemigroupAction
posRealAction
Real.instMul
β€”Complex.smul_re
pos_real_smul_injective πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
UpperHalfPlane
SemigroupAction.toSMul
Monoid.toSemigroup
Positive.instMonoidSubtypeLtOfNat
Real.semiring
Real.partialOrder
Real.instIsStrictOrderedRing
MulAction.toSemigroupAction
posRealAction
β€”Real.instIsStrictOrderedRing
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
range_coe πŸ“–mathematicalβ€”Set.range
Complex
UpperHalfPlane
coe
upperHalfPlaneSet
β€”Set.ext
re_add_im πŸ“–mathematicalβ€”Complex
Complex.instAdd
Complex.ofReal
re
Complex.instMul
im
Complex.I
coe
β€”Complex.re_add_im
vadd_im πŸ“–mathematicalβ€”im
HVAdd.hVAdd
Real
UpperHalfPlane
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
β€”zero_add
vadd_left_injective πŸ“–mathematicalβ€”Real
UpperHalfPlane
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
β€”β€”
vadd_re πŸ“–mathematicalβ€”re
HVAdd.hVAdd
Real
UpperHalfPlane
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
Real.instAdd
β€”β€”
vadd_right_cancel_iff πŸ“–mathematicalβ€”HVAdd.hVAdd
Real
UpperHalfPlane
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
β€”AddRightCancelSemigroup.toIsRightCancelAdd

(root)

Definitions

NameCategoryTheorems
UpperHalfPlane πŸ“–CompData
360 mathmath: CuspFormClass.qExpansion_isBigO, ModularForm.coe_mul, UpperHalfPlane.mdifferentiable_num, ModularForm.mul_slash_SL2, ModularGroup.SLOnGLPos_smul_apply, ModularForm.smul_slash, CuspFormClass.holo, SlashInvariantForm.coe_prodEqualWeights, ModularFormClass.differentiableAt_comp_ofComplex, ModularFormClass.qExpansionFormalMultilinearSeries_apply_norm, ModularFormClass.hasFPowerSeries_cuspFunction, CuspForm.toFun_eq_coe, qExpansion_eq_zero_iff, SlashInvariantForm.slash_action_eq', ModularForm.mul_slash, qExpansionRingHom_apply, CuspFormClass.zero_at_infty_comp_ofComplex, UpperHalfPlane.image_coe_sphere, ModularForm.constℝ_apply, UpperHalfPlane.im_div_exp_dist_le, UpperHalfPlane.re_smul, OnePoint.isBoundedAt_iff_exists_SL2Z, UpperHalfPlane.isOpenEmbedding_coe, UpperHalfPlane.comp_ofComplex_of_im_pos, UpperHalfPlane.tendsto_smul_atImInfty, UpperHalfPlane.dist_le_iff_dist_coe_center_le, SlashInvariantForm.quotientFunc_mk, ModularForm.SL_slash, UpperHalfPlane.im_smul_eq_div_normSq, UpperHalfPlane.specialLinearGroup_apply, SlashInvariantForm.coe_constℝ, SlashInvariantForm.smul_applyℝ, UpperHalfPlane.canLift, ModularForm.coe_constℝ, ModularForm.prod_slash, UpperHalfPlane.isometry_real_vadd, SlashInvariantForm.add_apply, CuspForm.zero_apply, ModularForm.norm_eq_zero_iff, Continuous.upperHalfPlaneMk, SlashInvariantFormClass.eq_cuspFunction, ModularForm.prod_slash_sum_weights, jacobiTheta_T_sq_smul, OnePoint.isBoundedAt_iff_forall_SL2Z, SlashInvariantForm.quotientFunc_smul, SlashInvariantForm.constℝ_toFun, ModularGroup.sl_moeb, CuspFormClass.zero_at_cusps, SlashInvariantForm.one_coe_eq_one, OnePoint.isZeroAt_iff_exists_SL2Z, SlashInvariantForm.smul_apply, SlashInvariantForm.coe_smulℝ, EisensteinSeries.E2_slash_action, UpperHalfPlane.isometry_vertical_line, CuspForm.coe_trace, UpperHalfPlane.glPos_smul_def, UpperHalfPlane.coe_pos_real_smul, ModularGroup.coe_T_zpow_smul_eq, UpperHalfPlane.comp_ofComplex, ModularForm.coe_neg, CuspForm.coeHom_apply, EisensteinSeries.G2_slash_action, SlashInvariantForm.const_toFun, UpperHalfPlane.denom_cocycle_Οƒ, UpperHalfPlane.mdifferentiable_inv_denom, ModularGroup.tendsto_abs_re_smul, UpperHalfPlane.dist_eq_iff_eq_sinh, SlashInvariantForm.coe_translate, UpperHalfPlane.ofComplex_apply_of_im_nonpos, UpperHalfPlane.dist_log_im_le, SlashInvariantForm.ext_iff, ModularGroup.exists_max_im, ModularFormClass.levelOne_neg_weight_eq_zero, ModularFormClass.continuous, UpperHalfPlane.im_le_im_mul_exp_dist, qExpansion_of_mul, UpperHalfPlane.contMDiff_coe, CuspForm.holo', UpperHalfPlane.vadd_re, UpperHalfPlane.dist_eq_iff_eq_sq_sinh, ModularGroup.im_T_smul, CuspFormClass.petersson_bounded_left, UpperHalfPlane.zero_form_isBoundedAtImInfty, UpperHalfPlane.instLocPathConnectedSpace, ModularForm.coe_natCast, UpperHalfPlane.image_coe_ball, cuspFunction_smul, UpperHalfPlane.contMDiff_inv_denom, ModularForm.coe_prodEqualWeights, UpperHalfPlane.dist_triangle, UpperHalfPlane.dist_of_re_eq, UpperHalfPlane.instT4Space, UpperHalfPlane.cosh_dist, UpperHalfPlane.image_coe_closedBall, EisensteinSeries.G2_S_transform, UpperHalfPlane.instNoncompactSpace, SlashInvariantForm.sub_apply, ModularGroup.SL_to_GL_tower, ModularForm.zero_apply, UpperHalfPlane.dist_coe_center, UpperHalfPlane.ofComplex_apply_of_im_pos, qExpansion_one, jacobiTheta_S_smul, CuspForm.coe_smul, UpperHalfPlane.instContractibleSpace, cuspFunction_neg, ModularGroup.re_T_smul, ModularForm.toSlashInvariantForm_coe, UpperHalfPlane.lt_dist_iff_lt_dist_coe_center, UpperHalfPlane.coe_smul_of_det_pos, CuspFormClass.zero_at_infty, CuspForm.coe_neg, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_ne_zero, UpperHalfPlane.modular_S_smul, ModularGroup.re_T_inv_smul, EisensteinSeries.D2_inv, UpperHalfPlane.dist_lt_iff_dist_coe_center_lt, SlashInvariantForm.exists_one_half_le_im_and_norm_le, EisensteinSeries.q_expansion_riemannZeta, SlashInvariantFormClass.periodic_comp_ofComplex, OnePoint.isZeroAt_iff_forall_SL2Z, UpperHalfPlane.contMDiff_num, UpperHalfPlane.mdifferentiable_denom, OnePoint.isBoundedAt_iff, ModularForm.one_coe_eq_one, UpperHalfPlane.im_smul, OnePoint.IsZeroAt.smul_iff, ModularGroup.normSq_S_smul_lt_one, ModularFormClass.exp_decay_sub_atImInfty, ModularForm.sub_apply, ModularFormClass.exists_petersson_le, UpperHalfPlane.coe_smul, ModularGroup.exists_row_one_eq_and_min_re, UpperHalfPlane.ofComplex_apply_eq_of_im_nonpos, ModularForm.ext_iff, SlashInvariantForm.coe_sub, ModularForm.const_toFun, ModularGroup.re_T_zpow_smul, UpperHalfPlane.dist_eq, CuspForm.coe_translate, CuspFormClass.petersson_bounded_right, ModularFormClass.bdd_at_infty, OnePoint.IsZeroAt.add, ModularFormClass.exists_bound, ModularForm.neg_apply, ModularGroup.im_lt_im_S_smul, ModularForm.eq_const_of_weight_zero, qExpansion_sub, SlashInvariantForm.coe_prod, SlashInvariantForm.coe_natCast, UpperHalfPlane.ofComplex_apply_eq_ite, ModularGroup.im_T_zpow_smul, EisensteinSeries.isBoundedAtImInfty_eisensteinSeries_SIF, UpperHalfPlane.qParam_tendsto_atImInfty, UpperHalfPlane.dist_eq_iff_dist_coe_center_eq, ModularForm.coe_eq_zero_iff, ModularForm.coeHom_apply, ModularForm.slash_action_eq'_iff, UpperHalfPlane.pos_real_smul_injective, cuspFunction_mul, UpperHalfPlane.J_smul, SlashInvariantForm.slash_action_eqn'', UpperHalfPlane.cmp_dist_eq_cmp_dist_coe_center, ModularFormClass.qExpansion_coeff_zero, EisensteinSeries.eisensteinSeries_SIF_apply, CuspForm.coe_sub, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, CuspForm.neg_apply, UpperHalfPlane.le_dist_coe, ModularFormClass.differentiableAt_cuspFunction, ModularGroup.exists_one_half_le_im_smul, UpperHalfPlane.contMDiff_denom_zpow, qExpansion_add, UpperHalfPlane.petersson_slash_SL, UpperHalfPlane.le_dist_iff_le_dist_coe_center, SlashInvariantForm.toFun_eq_coe, ModularForm.SL_slash_def, UpperHalfPlane.ofComplex_apply, UpperHalfPlane.instLocallyCompactSpace, cuspFunction_add, SlashInvariantForm.coe_zero, UpperHalfPlane.coe_J_smul, ModularForm.IsGLPos.coe_smul, UpperHalfPlane.dist_comm, UpperHalfPlane.dist_center_dist, UpperHalfPlane.atImInfty_mem, UpperHalfPlane.exists_SL2_smul_eq_of_apply_zero_one_eq_zero, UpperHalfPlane.dist_le_dist_coe_div_sqrt, OnePoint.IsBoundedAt.smul_iff, CuspFormClass.exists_bound, UpperHalfPlane.pos_real_re, UpperHalfPlane.IsZeroAtImInfty.zero_at_infty_comp_ofComplex, ModularForm.IsGLPos.smul_apply, SlashInvariantForm.coe_trace, UpperHalfPlane.eventuallyEq_coe_comp_ofComplex, SlashInvariantForm.coe_neg, CuspForm.ext_iff, SlashInvariantForm.slash_action_eqn_SL'', UpperHalfPlane.comp_ofComplex_of_im_le_zero, UpperHalfPlane.continuous_im, ModularFormClass.hasSum_qExpansion_of_abs_lt, UpperHalfPlane.atImInfty_basis, UpperHalfPlane.ModularGroup_T_zpow_mem_verticalStrip, UpperHalfPlane.verticalStrip_anti_right, EisensteinSeries.q_expansion_bernoulli, UpperHalfPlane.coe_specialLinearGroup_apply, EisensteinSeries.D2_one, ModularFormClass.levelOne_weight_zero_const, ModularGroup.im_smul_eq_div_normSq, UpperHalfPlane.cosh_half_dist, UpperHalfPlane.exp_half_dist, ModularFormClass.qExpansion_coeff_eq_circleIntegral, UpperHalfPlane.vadd_right_cancel_iff, CuspForm.coe_zero, ModularForm.coe_prod, EisensteinSeries.tendsto_double_sum_S_act, ModularForm.smul_apply, UpperHalfPlane.coe_injective, qExpansion_neg, ModularForm.const_apply, OnePoint.IsBoundedAt.add, SlashInvariantForm.slash_S_apply, ModularForm.coe_intCast, UpperHalfPlane.verticalStrip_mono, UpperHalfPlane.sinh_half_dist_add_dist, ModularForm.coe_norm, UpperHalfPlane.instNeBotAtImInfty, ModularFormClass.qExpansion_isBigO, UpperHalfPlane.instT3Space, CuspForm.IsGLPos.smul_apply, qExpansion_mul, mdifferentiable_jacobiTheta, ModularForm.coe_add, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, cuspFunction_sub, CuspForm.sub_apply, ModularFormClass.bdd_at_cusps, ModularForm.coe_const, qExpansion_mul_coeff_zero, ModularForm.cuspFunction_mul, UpperHalfPlane.contMDiffAt_ofComplex, ModularForm.prod_fintype_slash, ModularFormClass.bounded_at_infty_comp_ofComplex, CuspFormClass.exp_decay_atImInfty', ModularForm.holo', CuspForm.IsGLPos.coe_smul, SlashInvariantForm.vAdd_width_periodic, UpperHalfPlane.coe_vadd, UpperHalfPlane.instSecondCountableTopology, ModularGroup.exists_smul_mem_fd, ModularFormClass.hasSum_qExpansion_of_norm_lt, ModularFormClass.bdd_at_infty_slash, ModularFormClass.cuspFunction_apply_zero, UpperHalfPlane.contMDiffAt_iff, UpperHalfPlane.instIsManifoldComplexModelWithCornersSelfTopWithTopENat, UpperHalfPlane.instProperSpace, CuspFormClass.cuspFunction_apply_zero, ModularForm.slash_def, UpperHalfPlane.instContinuousGLSMul, CuspFormClass.zero_at_infty_slash, ModularForm.is_invariant_one', EisensteinSeries.eisensteinSeriesSIF_apply, ModularGroup.im_T_inv_smul, UpperHalfPlane.mdifferentiable_coe, SlashInvariantFormClass.norm_petersson_smul, EisensteinSeries.eisSummand_extension_differentiableOn, ModularFormClass.analyticAt_cuspFunction_zero, UpperHalfPlane.modular_T_zpow_smul, SlashInvariantForm.coe_add, UpperHalfPlane.dist_coe_le, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, ModularFormClass.differentiableOn_cuspFunction_ball, ModularFormClass.holo, UpperHalfPlane.pos_real_im, UpperHalfPlane.sinh_half_dist, UpperHalfPlane.dist_le_iff_le_sinh, ModularForm.is_invariant_const, ModularForm.SL_slash_apply, UpperHalfPlane.dist_coe_center_sq, EisensteinSeries.eisSummand_SL2_apply, UpperHalfPlane.mem_verticalStrip_iff, UpperHalfPlane.tendsto_coe_atImInfty, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, UpperHalfPlane.instInfinite, SlashInvariantForm.slash_action_eqn', UpperHalfPlane.cosh_dist', SlashInvariantForm.coe_smul, ModularForm.qExpansion_mul, UpperHalfPlane.mdifferentiableAt_iff, UpperHalfPlane.IsZeroAtImInfty.slash, CuspFormClass.exp_decay_atImInfty, qExpansion_zero, UpperHalfPlane.tanh_half_dist, ModularForm.coe_translate, ModularForm.coe_smul, UpperHalfPlane.neg_smul, ModularForm.coe_sub, ModularForm.toFun_eq_coe, SlashInvariantFormClass.petersson_smul, SlashInvariantForm.neg_apply, UpperHalfPlane.verticalStrip_mono_left, ModularForm.coe_trace, UpperHalfPlane.range_coe, SlashInvariantForm.coe_const, SlashInvariantForm.coeHom_injective, EisensteinSeries.eisensteinSeries_slash_apply, SlashInvariantForm.coe_mul, ModularFormClass.qExpansionFormalMultilinearSeries_coeff, ModularForm.coe_zero, UpperHalfPlane.contMDiff_smul, UpperHalfPlane.tendsto_comap_im_ofComplex, UpperHalfPlane.contMDiff_denom, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, UpperHalfPlane.isometry_pos_mul, qExpansion_of_pow, OnePoint.isZeroAt_iff, ModularForm.add_apply, qExpansion_smul, UpperHalfPlane.mdifferentiable_denom_zpow, SlashInvariantFormClass.slash_action_eq, SlashInvariantForm.slash_action_eqn, ModularFormClass.hasSum_qExpansion, ModularFormClass.qExpansion_coeff_eq_intervalIntegral, ModularGroup.SL_neg_smul, UpperHalfPlane.continuous_coe, UpperHalfPlane.mdifferentiable_iff, ModularFormClass.exp_decay_sub_atImInfty', UpperHalfPlane.isEmbedding_coe, SlashInvariantForm.vAdd_apply_of_mem_strictPeriods, ModularForm.is_invariant_one, ModularForm.mul_coe, EisensteinSeries.D2_T, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, UpperHalfPlane.mdifferentiableAt_ofComplex, SlashInvariantForm.coe_norm, EisensteinSeries.D2_mul, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, UpperHalfPlane.vadd_im, CuspForm.coe_add, CuspForm.toSlashInvariantForm_coe, CuspForm.smul_apply, UpperHalfPlane.instNontrivial, UpperHalfPlane.modular_T_smul, UpperHalfPlane.IsBoundedAtImInfty.slash, SlashInvariantForm.coe_intCast, ModularGroup.smul_eq_lcRow0_add, UpperHalfPlane.vadd_left_injective, ModularForm.constℝ_toFun, ModularForm.SL_smul_slash, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly, SlashInvariantForm.T_zpow_width_invariant, EisensteinSeries.isBoundedAtImInfty_eisensteinSeriesSIF, UpperHalfPlane.mdifferentiable_smul, ModularForm.slash_apply, ModularGroup.isCompact_truncatedFundamentalDomain, EisensteinSeries.G2_T_transform, CuspForm.add_apply, UpperHalfPlane.petersson_slash, ModularGroup.coe_truncatedFundamentalDomain, UpperHalfPlane.continuous_re

---

← Back to Index