Documentation Verification Report

Exp

📁 Source: Mathlib/Analysis/Complex/UpperHalfPlane/Exp.lean

Statistics

MetricCount
Definitions0
Theoremsim_invQParam_pos_of_norm_lt_one, norm_qParam_le_of_one_half_le_im, norm_exp_two_pi_I_lt_one, norm_qParam_lt_one
4
Total4

Function.Periodic

Theorems

NameKindAssumesProvesValidatesDepends On
im_invQParam_pos_of_norm_lt_one 📖mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Complex
Complex.instNorm
Real.instOne
Complex.im
invQParam
Nat.instAtLeastTwoHAddOfNat
mul_pos_of_neg_of_neg
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
div_neg_of_neg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Real.two_pi_pos
Real.log_neg_iff
norm_pos_iff
im_invQParam
norm_qParam_le_of_one_half_le_im 📖mathematicalReal
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.im
Norm.norm
Complex
Complex.instNorm
qParam
Real.exp
Real.instNeg
Real.pi
Nat.instAtLeastTwoHAddOfNat
qParam.eq_1
Complex.ofReal_one
div_one
Complex.norm_exp
Real.exp_le_exp
mul_right_comm
Complex.mul_I_re
neg_le_neg_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Complex.ofReal_ofNat
Complex.ofReal_mul
Complex.im_ofReal_mul
mul_comm
mul_assoc
le_mul_iff_one_le_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.pi_pos
div_le_iff₀'
PosMulReflectLE.toPosMulReflectLT
two_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike

UpperHalfPlane

Theorems

NameKindAssumesProvesValidatesDepends On
norm_exp_two_pi_I_lt_one 📖mathematicalReal
Real.instLT
Norm.norm
Complex
Complex.instNorm
Complex.exp
Complex.instMul
instOfNatAtLeastTwo
Complex.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex.ofReal
Real.pi
Complex.I
coe
Real.instOne
Nat.instAtLeastTwoHAddOfNat
Complex.norm_exp
MulZeroClass.mul_zero
sub_zero
MulZeroClass.zero_mul
add_zero
mul_one
sub_self
zero_sub
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_one
Function.Periodic.norm_qParam
neg_mul
div_one
norm_qParam_lt_one
norm_qParam_lt_one 📖mathematicalReal
Real.instLT
Norm.norm
Complex
Complex.instNorm
Function.Periodic.qParam
Real.instNatCast
coe
Real.instOne
Nat.instAtLeastTwoHAddOfNat
Function.Periodic.norm_qParam
Real.exp_lt_one_iff
neg_mul
coe_im
neg_div
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pos_iff_of_pos_right
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_zero
Real.instZeroLEOneClass
RCLike.charZero_rclike
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.pi_pos
im_pos

---

← Back to Index