Documentation Verification Report

Metric

πŸ“ Source: Mathlib/Analysis/Complex/UpperHalfPlane/Metric.lean

Statistics

MetricCount
Definitionscenter, instDist, instMetricSpace, metricSpaceAux
4
Theoremscenter_im, center_re, center_zero, cmp_dist_eq_cmp_dist_coe_center, cosh_dist, cosh_dist', cosh_half_dist, dist_center_dist, dist_coe_center, dist_coe_center_sq, dist_coe_le, dist_comm, dist_eq, dist_eq_iff_dist_coe_center_eq, dist_eq_iff_eq_sinh, dist_eq_iff_eq_sq_sinh, dist_le_dist_coe_div_sqrt, dist_le_iff_dist_coe_center_le, dist_le_iff_le_sinh, dist_log_im_le, dist_lt_iff_dist_coe_center_lt, dist_of_re_eq, dist_self_center, dist_triangle, exp_half_dist, im_div_exp_dist_le, im_le_im_mul_exp_dist, im_pos_of_dist_center_le, image_coe_ball, image_coe_closedBall, image_coe_sphere, instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, instProperSpace, isometry_pos_mul, isometry_real_vadd, isometry_vertical_line, le_dist_coe, le_dist_iff_le_dist_coe_center, lt_dist_iff_lt_dist_coe_center, sinh_half_dist, sinh_half_dist_add_dist, tanh_half_dist
42
Total46

UpperHalfPlane

Definitions

NameCategoryTheorems
center πŸ“–CompOp
16 mathmath: image_coe_sphere, dist_le_iff_dist_coe_center_le, center_zero, center_re, image_coe_ball, center_im, image_coe_closedBall, dist_coe_center, lt_dist_iff_lt_dist_coe_center, dist_lt_iff_dist_coe_center_lt, dist_self_center, dist_eq_iff_dist_coe_center_eq, cmp_dist_eq_cmp_dist_coe_center, le_dist_iff_le_dist_coe_center, dist_center_dist, dist_coe_center_sq
instDist πŸ“–CompOp
29 mathmath: im_div_exp_dist_le, dist_le_iff_dist_coe_center_le, dist_eq_iff_eq_sinh, dist_log_im_le, im_le_im_mul_exp_dist, dist_eq_iff_eq_sq_sinh, dist_triangle, dist_of_re_eq, cosh_dist, dist_coe_center, lt_dist_iff_lt_dist_coe_center, dist_lt_iff_dist_coe_center_lt, dist_eq, dist_eq_iff_dist_coe_center_eq, cmp_dist_eq_cmp_dist_coe_center, le_dist_coe, le_dist_iff_le_dist_coe_center, dist_comm, dist_center_dist, dist_le_dist_coe_div_sqrt, cosh_half_dist, exp_half_dist, sinh_half_dist_add_dist, dist_coe_le, sinh_half_dist, dist_le_iff_le_sinh, dist_coe_center_sq, cosh_dist', tanh_half_dist
instMetricSpace πŸ“–CompOp
8 mathmath: image_coe_sphere, isometry_real_vadd, isometry_vertical_line, image_coe_ball, image_coe_closedBall, instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, instProperSpace, isometry_pos_mul
metricSpaceAux πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
center_im πŸ“–mathematicalβ€”im
center
Real
Real.instMul
Real.cosh
β€”β€”
center_re πŸ“–mathematicalβ€”re
center
β€”β€”
center_zero πŸ“–mathematicalβ€”center
Real
Real.instZero
β€”ext_re_im
Real.cosh_zero
mul_one
cmp_dist_eq_cmp_dist_coe_center πŸ“–mathematicalβ€”cmp
Real
Real.instLT
Real.decidableLT
Dist.dist
UpperHalfPlane
instDist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.instMul
im
Real.sinh
β€”lt_or_ge
LT.lt.cmp_eq_gt
LT.lt.trans_le
dist_nonneg
mul_neg_of_pos_of_neg
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
Real.sinh_neg_iff
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Meta.Positivity.sinh_nonneg_of_nonneg
Nat.instAtLeastTwoHAddOfNat
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
StrictMonoOn.cmp_map_eq
Real.cosh_strictMonoOn
pow_left_strictMonoOnβ‚€
IsOrderedRing.toMulPosMono
two_ne_zero
cmp.congr_simp
dist_coe_center_sq
cmp_mul_pos_left
cmp_sub_zero
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_sub
cmp_add_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
zero_add
cosh_dist πŸ“–mathematicalβ€”Real.cosh
Dist.dist
UpperHalfPlane
instDist
Real
Real.instAdd
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
im
β€”Nat.instAtLeastTwoHAddOfNat
dist_eq
Real.cosh_two_mul
Real.cosh_sq'
add_assoc
two_mul
Real.sinh_arsinh
div_pow
mul_pow
Real.sq_sqrt
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
sq
mul_assoc
mul_div_assoc
mul_div_mul_left
ne_of_gt
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
cosh_dist' πŸ“–mathematicalβ€”Real.cosh
Dist.dist
UpperHalfPlane
instDist
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Monoid.toNatPow
Real.instMonoid
Real.instSub
re
im
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
cosh_dist
Complex.sq_norm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
ne_of_gt
im_pos
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
cosh_half_dist πŸ“–mathematicalβ€”Real.cosh
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
UpperHalfPlane
instDist
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
Real.instMul
Real.sqrt
im
β€”Nat.instAtLeastTwoHAddOfNat
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_lt
Real.cosh_pos
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
dist_nonneg
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
im_pos
Real.cosh_sq'
sinh_half_dist
div_pow
one_add_div
ne_of_gt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
mul_pow
Real.sq_sqrt
Complex.sq_norm
Complex.normSq_sub
Complex.normSq_conj
Complex.conj_conj
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
dist_center_dist πŸ“–mathematicalβ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
UpperHalfPlane
instDist
Real
Real.instMul
im
Real.sinh
β€”dist_eq_iff_dist_coe_center_eq
dist_coe_center πŸ“–mathematicalβ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.sqrt
Real
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
im
Real.instSub
Real.cosh
UpperHalfPlane
instDist
Monoid.toNatPow
Real.instMonoid
Real.sinh
β€”Nat.instAtLeastTwoHAddOfNat
Real.sqrt_sq
dist_nonneg
dist_coe_center_sq
dist_coe_center_sq πŸ“–mathematicalβ€”Real
Monoid.toNatPow
Real.instMonoid
Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.instAdd
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
im
Real.instSub
Real.cosh
UpperHalfPlane
instDist
Real.sinh
β€”Nat.instAtLeastTwoHAddOfNat
ne_of_gt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
im_pos
Complex.sq_norm
sub_sq
mul_pow
Real.cosh_sq
cosh_dist'
mul_sub
mul_div_cancelβ‚€
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.mul_congr
Nat.cast_one
dist_coe_le πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
im
Real.instSub
Real.exp
UpperHalfPlane
instDist
Real.instOne
β€”dist_triangle_right
dist_center_dist
dist_self_center
mul_add
Distrib.leftDistribClass
add_sub_assoc
Real.sinh_add_cosh
dist_comm πŸ“–mathematicalβ€”Dist.dist
UpperHalfPlane
instDist
β€”Nat.instAtLeastTwoHAddOfNat
dist_comm
mul_comm
dist_eq πŸ“–mathematicalβ€”Dist.dist
UpperHalfPlane
instDist
Real
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.arsinh
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.sqrt
im
β€”β€”
dist_eq_iff_dist_coe_center_eq πŸ“–mathematicalβ€”Dist.dist
UpperHalfPlane
instDist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real
Real.instMul
im
Real.sinh
β€”eq_iff_eq_of_cmp_eq_cmp
cmp_dist_eq_cmp_dist_coe_center
dist_eq_iff_eq_sinh πŸ“–mathematicalβ€”Dist.dist
UpperHalfPlane
instDist
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
im
Real.sinh
β€”Nat.instAtLeastTwoHAddOfNat
div_left_inj'
two_ne_zero'
CharZero.NeZero.two
RCLike.charZero_rclike
sinh_half_dist
dist_eq_iff_eq_sq_sinh πŸ“–mathematicalReal
Real.instLE
Real.instZero
Dist.dist
UpperHalfPlane
instDist
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
im
Real.sinh
β€”Nat.instAtLeastTwoHAddOfNat
dist_eq_iff_eq_sinh
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
dist_nonneg
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
im_pos
Mathlib.Meta.Positivity.sinh_nonneg_of_nonneg
div_pow
mul_pow
Real.sq_sqrt
le_of_lt
mul_assoc
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
dist_le_dist_coe_div_sqrt πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
UpperHalfPlane
instDist
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.sqrt
Real.instMul
im
β€”Nat.instAtLeastTwoHAddOfNat
dist_le_iff_le_sinh
div_mul_eq_div_div_swap
Real.self_le_sinh_iff
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
dist_nonneg
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
im_pos
dist_le_iff_dist_coe_center_le πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
UpperHalfPlane
instDist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.instMul
im
Real.sinh
β€”le_iff_le_of_cmp_eq_cmp
cmp_dist_eq_cmp_dist_coe_center
dist_le_iff_le_sinh πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
UpperHalfPlane
instDist
DivInvMonoid.toDiv
Real.instDivInvMonoid
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sqrt
im
Real.sinh
β€”Nat.instAtLeastTwoHAddOfNat
div_le_div_iff_of_pos_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
zero_lt_two'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sinh_le_sinh
sinh_half_dist
dist_log_im_le πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
Real.log
im
UpperHalfPlane
instDist
β€”im_pos
dist_of_re_eq
Nat.instAtLeastTwoHAddOfNat
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
sub_self
zero_pow
Nat.instCharZero
zero_add
Real.sqrt_sq_eq_abs
Complex.abs_im_le_norm
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
dist_lt_iff_dist_coe_center_lt πŸ“–mathematicalβ€”Real
Real.instLT
Dist.dist
UpperHalfPlane
instDist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.instMul
im
Real.sinh
β€”lt_iff_lt_of_cmp_eq_cmp
cmp_dist_eq_cmp_dist_coe_center
dist_of_re_eq πŸ“–mathematicalreDist.dist
UpperHalfPlane
instDist
Real
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
Real.log
im
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
dist_eq_iff_dist_coe_center_eq
Real.dist_eq
Real.abs_sinh
Real.log_div
im_ne_zero
Nat.instAtLeastTwoHAddOfNat
Real.sinh_log
Complex.dist_of_re_eq
coe_im
center_im
Real.cosh_abs
Real.cosh_log
inv_div
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instIsOrderedRing
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
dist_self_center πŸ“–mathematicalβ€”Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real
Real.instMul
im
Real.instSub
Real.cosh
Real.instOne
β€”Complex.dist_of_re_eq
center_re
dist_comm
Real.dist_eq
mul_sub
mul_one
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_nonneg
covariant_swap_add_of_covariant_add
le_mul_of_one_le_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
LT.lt.le
im_pos
Real.one_le_cosh
dist_triangle πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
UpperHalfPlane
instDist
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
dist_le_iff_le_sinh
sinh_half_dist_add_dist
div_mul_eq_div_div
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
dist_comm
dist_pos
Complex.conj_eq_iff_im
im_ne_zero
div_mul_eq_mul_div
div_le_div_of_nonneg_right
EuclideanGeometry.mul_dist_le_mul_dist_add_mul_dist
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
im_pos
exp_half_dist πŸ“–mathematicalβ€”Real.exp
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
UpperHalfPlane
instDist
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
Real.instMul
Real.sqrt
im
β€”Nat.instAtLeastTwoHAddOfNat
Real.sinh_add_cosh
sinh_half_dist
cosh_half_dist
add_div
im_div_exp_dist_le πŸ“–mathematicalβ€”Real
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
im
Real.exp
Dist.dist
UpperHalfPlane
instDist
β€”div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Real.exp_pos
im_le_im_mul_exp_dist
im_le_im_mul_exp_dist πŸ“–mathematicalβ€”Real
Real.instLE
im
Real.instMul
Real.exp
Dist.dist
UpperHalfPlane
instDist
β€”div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
Real.exp_log
Real.exp_sub
Real.exp_le_exp
LE.le.trans
le_abs_self
dist_log_im_le
im_pos_of_dist_center_le πŸ“–mathematicalReal
Real.instLE
Dist.dist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
Real.instMul
im
Real.sinh
Real.instLT
Real.instZero
Complex.im
β€”mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sinh_lt_cosh
mul_sub
sub_le_sub_left
dist_comm
sub_le_comm
LE.le.trans
le_abs_self
Complex.abs_im_le_norm
image_coe_ball πŸ“–mathematicalβ€”Set.image
UpperHalfPlane
Complex
coe
Metric.ball
MetricSpace.toPseudoMetricSpace
instMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
center
Real
Real.instMul
im
Real.sinh
β€”Set.ext
dist_lt_iff_dist_coe_center_lt
CanLift.prf
canLift
im_pos_of_dist_center_le
Metric.ball_subset_closedBall
Set.mem_image_of_mem
image_coe_closedBall πŸ“–mathematicalβ€”Set.image
UpperHalfPlane
Complex
coe
Metric.closedBall
MetricSpace.toPseudoMetricSpace
instMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
center
Real
Real.instMul
im
Real.sinh
β€”Set.ext
dist_le_iff_dist_coe_center_le
CanLift.prf
canLift
im_pos_of_dist_center_le
Set.mem_image_of_mem
image_coe_sphere πŸ“–mathematicalβ€”Set.image
UpperHalfPlane
Complex
coe
Metric.sphere
MetricSpace.toPseudoMetricSpace
instMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
center
Real
Real.instMul
im
Real.sinh
β€”Set.ext
dist_eq_iff_dist_coe_center_eq
CanLift.prf
canLift
im_pos_of_dist_center_le
Metric.sphere_subset_closedBall
Set.mem_image_of_mem
instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal πŸ“–mathematicalβ€”IsIsometricSMul
Matrix.SpecialLinearGroup
Fin.fintype
Real
Real.commRing
UpperHalfPlane
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpace
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
SLAction
Algebra.id
CommRing.toCommSemiring
β€”Isometry.of_dist_eq
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
im_pos
Complex.norm_mul
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ne_zero
im_inv_neg_coe_pos
modular_S_smul
inv_neg
Nat.instAtLeastTwoHAddOfNat
dist_neg_neg
NormedAddGroup.to_isIsometricVAdd_left
NormedAddGroup.to_isIsometricVAdd_right
dist_inv_invβ‚€
Complex.inv_im
neg_div
neg_neg
div_mul_div_comm
Real.sqrt_div
mul_div
div_div_div_comm
norm_mul
div_self
div_one
exists_SL2_smul_eq_of_apply_zero_one_eq_zero
Isometry.comp
isometry_real_vadd
isometry_pos_mul
exists_SL2_smul_eq_of_apply_zero_one_ne_zero
instProperSpace πŸ“–mathematicalβ€”ProperSpace
UpperHalfPlane
MetricSpace.toPseudoMetricSpace
instMetricSpace
β€”Topology.IsEmbedding.isCompact_iff
isEmbedding_coe
image_coe_closedBall
ProperSpace.isCompact_closedBall
Complex.instProperSpace
isometry_pos_mul πŸ“–mathematicalβ€”Isometry
UpperHalfPlane
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpace
Real
Real.instLT
Real.instZero
SemigroupAction.toSMul
Monoid.toSemigroup
Positive.instMonoidSubtypeLtOfNat
Real.semiring
Real.partialOrder
Real.instIsStrictOrderedRing
MulAction.toSemigroupAction
posRealAction
β€”Isometry.of_dist_eq
Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
pos_real_im
dist_smulβ‚€
NormedSpace.toNormSMulClass
mul_mul_mul_comm
Real.sqrt_mul
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sqrt_mul_self_eq_abs
Real.norm_eq_abs
mul_left_comm
mul_div_mul_left
abs_eq_zero
covariant_swap_add_of_covariant_add
LT.lt.ne'
isometry_real_vadd πŸ“–mathematicalβ€”Isometry
UpperHalfPlane
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
instMetricSpace
HVAdd.hVAdd
Real
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
Real.instAddMonoid
AddAction.toAddSemigroupAction
instAddActionReal
β€”Isometry.of_dist_eq
Nat.instAtLeastTwoHAddOfNat
dist_add_left
NormedAddGroup.to_isIsometricVAdd_left
vadd_im
isometry_vertical_line πŸ“–mathematicalβ€”Isometry
Real
UpperHalfPlane
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real.metricSpace
instMetricSpace
Real.exp
Real.exp_pos
β€”Isometry.of_dist_eq
Real.exp_pos
dist_of_re_eq
Real.log_exp
le_dist_coe πŸ“–mathematicalβ€”Real
Real.instLE
Real.instMul
im
Real.instSub
Real.instOne
Real.exp
Real.instNeg
Dist.dist
UpperHalfPlane
instDist
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”dist_center_dist
dist_self_center
Real.cosh_sub_sinh
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_triangle
le_dist_iff_le_dist_coe_center πŸ“–mathematicalβ€”Real
Real.instLT
Dist.dist
UpperHalfPlane
instDist
Real.instMul
im
Real.sinh
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
β€”lt_iff_lt_of_cmp_eq_cmp
cmp_eq_cmp_symm
cmp_dist_eq_cmp_dist_coe_center
lt_dist_iff_lt_dist_coe_center πŸ“–mathematicalβ€”Real
Real.instLT
Dist.dist
UpperHalfPlane
instDist
Real.instMul
im
Real.sinh
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
center
β€”lt_iff_lt_of_cmp_eq_cmp
cmp_eq_cmp_symm
cmp_dist_eq_cmp_dist_coe_center
sinh_half_dist πŸ“–mathematicalβ€”Real.sinh
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
UpperHalfPlane
instDist
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
Real.instMul
Real.sqrt
im
β€”Nat.instAtLeastTwoHAddOfNat
dist_eq
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
Real.sinh_arsinh
sinh_half_dist_add_dist πŸ“–mathematicalβ€”Real.sinh
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Dist.dist
UpperHalfPlane
instDist
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
Real.sqrt
im
β€”Nat.instAtLeastTwoHAddOfNat
add_div
Real.sinh_add
sinh_half_dist
cosh_half_dist
div_mul_div_comm
Complex.dist_self_conj
coe_im
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
im_pos
mul_comm
dist_comm
Complex.dist_conj_comm
mul_mul_mul_comm
Real.sqrt_mul
LT.lt.le
Real.mul_self_sqrt
tanh_half_dist πŸ“–mathematicalβ€”Real.tanh
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
UpperHalfPlane
instDist
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Complex
PseudoMetricSpace.toDist
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
β€”Nat.instAtLeastTwoHAddOfNat
Real.tanh_eq_sinh_div_cosh
sinh_half_dist
cosh_half_dist
div_div_div_comm
div_self
ne_of_gt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Real.sqrt_pos_of_pos
im_pos
div_one

---

← Back to Index