| Name | Category | Theorems |
SLAction π | CompOp | 43 mathmath: specialLinearGroup_apply, ModularGroup.one_lt_normSq_T_zpow_smul, jacobiTheta_T_sq_smul, ModularGroup.sl_moeb, ModularGroup.coe_T_zpow_smul_eq, ModularGroup.tendsto_abs_re_smul, ModularGroup.exists_max_im, ModularGroup.im_T_smul, EisensteinSeries.G2_S_transform, ModularGroup.SL_to_GL_tower, jacobiTheta_S_smul, ModularGroup.re_T_smul, exists_SL2_smul_eq_of_apply_zero_one_ne_zero, modular_S_smul, ModularGroup.re_T_inv_smul, ModularGroup.normSq_S_smul_lt_one, ModularGroup.exists_row_one_eq_and_min_re, ModularGroup.re_T_zpow_smul, ModularGroup.im_lt_im_S_smul, ModularGroup.im_T_zpow_smul, ModularForm.slash_action_eq'_iff, instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, ModularGroup.exists_one_half_le_im_smul, petersson_slash_SL, ModularForm.SL_slash_def, exists_SL2_smul_eq_of_apply_zero_one_eq_zero, SlashInvariantForm.slash_action_eqn_SL'', ModularGroup_T_zpow_mem_verticalStrip, coe_specialLinearGroup_apply, ModularGroup.im_smul_eq_div_normSq, EisensteinSeries.tendsto_double_sum_S_act, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, ModularGroup.exists_smul_mem_fd, ModularGroup.im_T_inv_smul, modular_T_zpow_smul, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, ModularGroup.SL_neg_smul, EisensteinSeries.tsum_symmetricIco_tsum_eq_S_act, ModularGroup.exists_eq_T_zpow_of_c_eq_zero, modular_T_smul, ModularGroup.smul_eq_lcRow0_add, SlashInvariantForm.T_zpow_width_invariant
|
denom π | CompOp | 34 mathmath: re_smul, im_smul_eq_div_normSq, moebius_im, glPos_smul_def, denom_cocycle_Ο, mdifferentiable_inv_denom, ModularGroup.denom_apply, contMDiff_inv_denom, denom_cocycle, coe_smul_of_det_pos, ModularGroup.denom_S, mdifferentiable_denom, im_smul, normSq_denom_pos, coe_smul, denom_J, SlashInvariantForm.slash_action_eqn'', denom_neg, contMDiff_denom_zpow, ModularForm.SL_slash_def, SlashInvariantForm.slash_action_eqn_SL'', ModularGroup.im_smul_eq_div_normSq, ModularGroup.exists_one_half_le_im_smul_and_norm_denom_le, denom_one, ModularForm.slash_def, ModularForm.SL_slash_apply, EisensteinSeries.eisSummand_SL2_apply, denom_cocycle', contMDiff_denom, mdifferentiable_denom_zpow, c_mul_im_sq_le_normSq_denom, smulAux'_im, Ο_denom, ModularForm.slash_apply
|
glAction π | CompOp | 24 mathmath: ModularGroup.SLOnGLPos_smul_apply, re_smul, tendsto_smul_atImInfty, im_smul_eq_div_normSq, ModularGroup.sl_moeb, glPos_smul_def, denom_cocycle_Ο, ModularGroup.SL_to_GL_tower, coe_smul_of_det_pos, im_smul, coe_smul, J_smul, SlashInvariantForm.slash_action_eqn'', coe_J_smul, ModularForm.slash_def, instContinuousGLSMul, SlashInvariantFormClass.norm_petersson_smul, SlashInvariantForm.slash_action_eqn', neg_smul, SlashInvariantFormClass.petersson_smul, contMDiff_smul, mdifferentiable_smul, ModularForm.slash_apply, petersson_slash
|
instCoeFun π | CompOp | β |
num π | CompOp | 11 mathmath: mdifferentiable_num, re_smul, num_neg, moebius_im, glPos_smul_def, denom_cocycle, coe_smul_of_det_pos, contMDiff_num, Ο_num, im_smul, coe_smul
|
smulAux π | CompOp | 2 mathmath: mul_smul', denom_cocycle'
|
smulAux' π | CompOp | 1 mathmath: smulAux'_im
|
Β«termββ[_]_Β» π | CompOp | β |
Β«termββ_Β» π | CompOp | β |
Ο π | CompOp | 17 mathmath: ModularForm.smul_slash, Ο_sq, denom_cocycle_Ο, Ο_mul, norm_Ο, sigma_J, Ο_num, Ο_neg, coe_smul, Ο_ofReal, ModularForm.slash_def, Ο_conj, denom_cocycle', Ο_mul_comm, Ο_denom, ModularForm.slash_apply, petersson_slash
|