π Source: Mathlib/Analysis/Complex/UpperHalfPlane/Topology.lean
instTopologicalSpace
ofComplex
verticalStrip
Β«termββ_Β»
upperHalfPlaneMk
ModularGroup_T_zpow_mem_verticalStrip
comp_ofComplex
comp_ofComplex_of_im_le_zero
comp_ofComplex_of_im_pos
continuous_coe
continuous_im
continuous_re
eventuallyEq_coe_comp_ofComplex
instContinuousGLSMul
instContractibleSpace
instLocPathConnectedSpace
instLocallyCompactSpace
instNoncompactSpace
instSecondCountableTopology
instT3Space
instT4Space
isEmbedding_coe
isOpenEmbedding_coe
mem_verticalStrip_iff
ofComplex_apply
ofComplex_apply_eq_ite
ofComplex_apply_eq_of_im_nonpos
ofComplex_apply_of_im_nonpos
ofComplex_apply_of_im_pos
subset_verticalStrip_of_isCompact
verticalStrip_anti_right
verticalStrip_mono
verticalStrip_mono_left
Continuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Real
Real.instLT
Real.instZero
Complex.im
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
Topology.IsEmbedding.continuous_iff
UpperHalfPlane.isEmbedding_coe
mdifferentiable_num
CuspFormClass.holo
ModularFormClass.differentiableAt_comp_ofComplex
CuspFormClass.zero_at_infty_comp_ofComplex
Continuous.upperHalfPlaneMk
mdifferentiable_inv_denom
ModularFormClass.continuous
contMDiff_coe
CuspForm.holo'
contMDiff_inv_denom
SlashInvariantFormClass.periodic_comp_ofComplex
contMDiff_num
mdifferentiable_denom
J_smul
contMDiff_denom_zpow
IsZeroAtImInfty.zero_at_infty_comp_ofComplex
mdifferentiable_jacobiTheta
contMDiffAt_ofComplex
ModularFormClass.bounded_at_infty_comp_ofComplex
ModularForm.holo'
contMDiffAt_iff
instIsManifoldComplexModelWithCornersSelfTopWithTopENat
mdifferentiable_coe
EisensteinSeries.eisSummand_extension_differentiableOn
EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn
ModularFormClass.holo
EisensteinSeries.eisensteinSeries_SIF_MDifferentiable
mdifferentiableAt_iff
contMDiff_smul
tendsto_comap_im_ofComplex
contMDiff_denom
EisensteinSeries.eisensteinSeriesSIF_mdifferentiable
mdifferentiable_denom_zpow
mdifferentiable_iff
mdifferentiableAt_ofComplex
EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly
mdifferentiable_smul
ModularGroup.isCompact_truncatedFundamentalDomain
Set
Set.instMembership
Real.instNatCast
im
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
SLAction
Ring.toIntAlgebra
Real.instRing
DivInvMonoid.toZPow
Group.toDivInvMonoid
Matrix.SpecialLinearGroup.instGroup
ModularGroup.T
modular_T_zpow_smul
mul_neg
neg_mul
Int.cast_natCast
add_comm
Int.cast_neg
Int.cast_mul
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
abs_eq_self
Int.sub_floor_div_mul_nonneg
Real.instIsStrictOrderedRing
LT.lt.le
Int.sub_floor_div_mul_lt
vadd_im
OpenPartialHomeomorph.toFun'
coe
Real.instLE
Topology.IsEmbedding.continuous
Real.pseudoMetricSpace
Continuous.comp
Complex.continuous_im
re
Complex.continuous_re
Filter.EventuallyEq
nhds
Filter.mp_mem
IsOpen.mem_nhds
isOpen_upperHalfPlaneSet
Filter.univ_mem'
ContinuousConstSMul
Matrix.GeneralLinearGroup
Real.semiring
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
glAction
continuous_induced_rng
continuous_id
Complex.continuous_conj
Continuous.div
IsTopologicalDivisionRing.toContinuousInvβ
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
Continuous.add
IsTopologicalSemiring.toContinuousAdd
Continuous.mul
continuous_const
denom_ne_zero
ContractibleSpace
Homeomorph.contractibleSpace_iff
range_coe
Convex.contractibleSpace
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_halfSpace_im_gt
LT.lt.trans_eq
one_pos
NeZero.charZero_one
I_im
LocPathConnectedSpace
Topology.IsOpenEmbedding.locPathConnectedSpace
LocallyConvexSpace.toLocPathConnectedSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
NormedSpace.toLocallyConvexSpace
LocallyCompactSpace
Topology.IsOpenEmbedding.locallyCompactSpace
locallyCompact_of_proper
Complex.instProperSpace
NoncompactSpace
Topology.IsEmbedding.isCompact_iff
Set.image_univ
Complex.closure_preimage_im
closure_Ioi
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
IsClosed.closure_eq
IsCompact.isClosed
Complex.instT2Space
SecondCountableTopology
TopologicalSpace.secondCountableTopology_induced
UniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
T3Space
Topology.IsEmbedding.t3Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
T4Space
T25Space.t2Space
T3Space.t25Space
CompletelyNormalSpace.of_regularSpace_secondCountableTopology
T3Space.toRegularSpace
Topology.IsEmbedding
Function.Injective.isEmbedding_induced
coe_injective
Topology.IsOpenEmbedding
abs
Real.lattice
Real.instAddGroup
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv
Real.decidableLT
instInhabited
LT.lt.not_ge
im_pos
IsCompact
Set.instHasSubset
Set.eq_empty_or_nonempty
Real.zero_lt_one
Set.empty_subset
IsCompact.exists_isMaxOn
instClosedIciTopology
OrderTopology.to_orderClosedTopology
Continuous.continuousOn
continuous_abs
IsCompact.exists_isMinOn
instClosedIicTopology
isMaxOn_iff
isMinOn_iff
le_rfl
LE.le.trans
---
β Back to Index