Documentation Verification Report

Topology

πŸ“ Source: Mathlib/Analysis/Complex/UpperHalfPlane/Topology.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpace, ofComplex, verticalStrip, Β«term↑ₕ_Β»
4
TheoremsupperHalfPlaneMk, ModularGroup_T_zpow_mem_verticalStrip, comp_ofComplex, comp_ofComplex_of_im_le_zero, comp_ofComplex_of_im_pos, continuous_coe, continuous_im, continuous_re, eventuallyEq_coe_comp_ofComplex, instContinuousGLSMul, instContractibleSpace, instLocPathConnectedSpace, instLocallyCompactSpace, instNoncompactSpace, instSecondCountableTopology, instT3Space, instT4Space, isEmbedding_coe, isOpenEmbedding_coe, mem_verticalStrip_iff, ofComplex_apply, ofComplex_apply_eq_ite, ofComplex_apply_eq_of_im_nonpos, ofComplex_apply_of_im_nonpos, ofComplex_apply_of_im_pos, subset_verticalStrip_of_isCompact, verticalStrip_anti_right, verticalStrip_mono, verticalStrip_mono_left
29
Total33

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
upperHalfPlaneMk πŸ“–mathematicalContinuous
Complex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
Real
Real.instLT
Real.instZero
Complex.im
UpperHalfPlane
UpperHalfPlane.instTopologicalSpace
β€”Topology.IsEmbedding.continuous_iff
UpperHalfPlane.isEmbedding_coe

UpperHalfPlane

Definitions

NameCategoryTheorems
instTopologicalSpace πŸ“–CompOp
60 mathmath: mdifferentiable_num, CuspFormClass.holo, ModularFormClass.differentiableAt_comp_ofComplex, CuspFormClass.zero_at_infty_comp_ofComplex, isOpenEmbedding_coe, comp_ofComplex_of_im_pos, Continuous.upperHalfPlaneMk, comp_ofComplex, mdifferentiable_inv_denom, ofComplex_apply_of_im_nonpos, ModularFormClass.continuous, contMDiff_coe, CuspForm.holo', instLocPathConnectedSpace, contMDiff_inv_denom, instT4Space, instNoncompactSpace, ofComplex_apply_of_im_pos, instContractibleSpace, SlashInvariantFormClass.periodic_comp_ofComplex, contMDiff_num, mdifferentiable_denom, ofComplex_apply_eq_of_im_nonpos, ofComplex_apply_eq_ite, J_smul, contMDiff_denom_zpow, ofComplex_apply, instLocallyCompactSpace, IsZeroAtImInfty.zero_at_infty_comp_ofComplex, eventuallyEq_coe_comp_ofComplex, comp_ofComplex_of_im_le_zero, continuous_im, instT3Space, mdifferentiable_jacobiTheta, contMDiffAt_ofComplex, ModularFormClass.bounded_at_infty_comp_ofComplex, ModularForm.holo', instSecondCountableTopology, contMDiffAt_iff, instIsManifoldComplexModelWithCornersSelfTopWithTopENat, instContinuousGLSMul, mdifferentiable_coe, EisensteinSeries.eisSummand_extension_differentiableOn, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, ModularFormClass.holo, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, mdifferentiableAt_iff, contMDiff_smul, tendsto_comap_im_ofComplex, contMDiff_denom, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, mdifferentiable_denom_zpow, continuous_coe, mdifferentiable_iff, isEmbedding_coe, mdifferentiableAt_ofComplex, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformly, mdifferentiable_smul, ModularGroup.isCompact_truncatedFundamentalDomain, continuous_re
ofComplex πŸ“–CompOp
23 mathmath: ModularFormClass.differentiableAt_comp_ofComplex, CuspFormClass.zero_at_infty_comp_ofComplex, comp_ofComplex_of_im_pos, comp_ofComplex, ofComplex_apply_of_im_nonpos, ofComplex_apply_of_im_pos, SlashInvariantFormClass.periodic_comp_ofComplex, ofComplex_apply_eq_of_im_nonpos, ofComplex_apply_eq_ite, J_smul, ofComplex_apply, IsZeroAtImInfty.zero_at_infty_comp_ofComplex, eventuallyEq_coe_comp_ofComplex, comp_ofComplex_of_im_le_zero, contMDiffAt_ofComplex, ModularFormClass.bounded_at_infty_comp_ofComplex, contMDiffAt_iff, EisensteinSeries.eisSummand_extension_differentiableOn, EisensteinSeries.eisensteinSeries_tendstoLocallyUniformlyOn, mdifferentiableAt_iff, tendsto_comap_im_ofComplex, mdifferentiable_iff, mdifferentiableAt_ofComplex
verticalStrip πŸ“–CompOp
6 mathmath: subset_verticalStrip_of_isCompact, ModularGroup_T_zpow_mem_verticalStrip, verticalStrip_anti_right, verticalStrip_mono, mem_verticalStrip_iff, verticalStrip_mono_left
Β«term↑ₕ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ModularGroup_T_zpow_mem_verticalStrip πŸ“–mathematicalβ€”UpperHalfPlane
Set
Set.instMembership
verticalStrip
Real
Real.instNatCast
im
Matrix.SpecialLinearGroup
Fin.fintype
Int.instCommRing
SemigroupAction.toSMul
Monoid.toSemigroup
Matrix.SpecialLinearGroup.monoid
MulAction.toSemigroupAction
SLAction
Ring.toIntAlgebra
Real.instRing
DivInvMonoid.toZPow
Group.toDivInvMonoid
Matrix.SpecialLinearGroup.instGroup
ModularGroup.T
β€”modular_T_zpow_smul
mul_neg
neg_mul
Int.cast_natCast
add_comm
Int.cast_neg
Int.cast_mul
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
abs_eq_self
Int.sub_floor_div_mul_nonneg
Real.instIsStrictOrderedRing
LT.lt.le
Int.sub_floor_div_mul_lt
vadd_im
comp_ofComplex πŸ“–mathematicalβ€”Complex
UpperHalfPlane
OpenPartialHomeomorph.toFun'
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
coe
β€”ofComplex_apply
comp_ofComplex_of_im_le_zero πŸ“–mathematicalReal
Real.instLE
Complex.im
Real.instZero
Complex
UpperHalfPlane
OpenPartialHomeomorph.toFun'
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
β€”ofComplex_apply_of_im_nonpos
comp_ofComplex_of_im_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
Complex
UpperHalfPlane
OpenPartialHomeomorph.toFun'
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
β€”ofComplex_apply
continuous_coe πŸ“–mathematicalβ€”Continuous
UpperHalfPlane
Complex
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”Topology.IsEmbedding.continuous
isEmbedding_coe
continuous_im πŸ“–mathematicalβ€”Continuous
UpperHalfPlane
Real
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
im
β€”Continuous.comp
Complex.continuous_im
continuous_coe
continuous_re πŸ“–mathematicalβ€”Continuous
UpperHalfPlane
Real
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
re
β€”Continuous.comp
Complex.continuous_re
continuous_coe
eventuallyEq_coe_comp_ofComplex πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
Filter.EventuallyEq
Complex
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
UpperHalfPlane
coe
OpenPartialHomeomorph.toFun'
instTopologicalSpace
ofComplex
β€”Filter.mp_mem
IsOpen.mem_nhds
isOpen_upperHalfPlaneSet
Filter.univ_mem'
ofComplex_apply_of_im_pos
instContinuousGLSMul πŸ“–mathematicalβ€”ContinuousConstSMul
Matrix.GeneralLinearGroup
Real
Fin.fintype
Real.semiring
UpperHalfPlane
instTopologicalSpace
SemigroupAction.toSMul
Monoid.toSemigroup
Units.instMonoid
Matrix
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Matrix.semiring
MulAction.toSemigroupAction
glAction
β€”continuous_induced_rng
Continuous.comp
continuous_id
Complex.continuous_conj
Continuous.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
NormedDivisionRing.to_isTopologicalDivisionRing
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
Continuous.add
IsTopologicalSemiring.toContinuousAdd
Continuous.mul
continuous_const
continuous_coe
denom_ne_zero
instContractibleSpace πŸ“–mathematicalβ€”ContractibleSpace
UpperHalfPlane
instTopologicalSpace
β€”Homeomorph.contractibleSpace_iff
isEmbedding_coe
range_coe
Convex.contractibleSpace
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_halfSpace_im_gt
LT.lt.trans_eq
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
I_im
instLocPathConnectedSpace πŸ“–mathematicalβ€”LocPathConnectedSpace
UpperHalfPlane
instTopologicalSpace
β€”Topology.IsOpenEmbedding.locPathConnectedSpace
LocallyConvexSpace.toLocPathConnectedSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
NormedSpace.toLocallyConvexSpace
isOpenEmbedding_coe
instLocallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
UpperHalfPlane
instTopologicalSpace
β€”Topology.IsOpenEmbedding.locallyCompactSpace
locallyCompact_of_proper
Complex.instProperSpace
isOpenEmbedding_coe
instNoncompactSpace πŸ“–mathematicalβ€”NoncompactSpace
UpperHalfPlane
instTopologicalSpace
β€”Topology.IsEmbedding.isCompact_iff
isEmbedding_coe
Set.image_univ
range_coe
Complex.closure_preimage_im
closure_Ioi
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
IsClosed.closure_eq
IsCompact.isClosed
Complex.instT2Space
instSecondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopology
UpperHalfPlane
instTopologicalSpace
β€”TopologicalSpace.secondCountableTopology_induced
UniformSpace.secondCountable_of_separable
EMetric.instIsCountablyGeneratedUniformity
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
Complex.instProperSpace
instT3Space πŸ“–mathematicalβ€”T3Space
UpperHalfPlane
instTopologicalSpace
β€”Topology.IsEmbedding.t3Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
Complex.instT2Space
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
isEmbedding_coe
instT4Space πŸ“–mathematicalβ€”T4Space
UpperHalfPlane
instTopologicalSpace
β€”instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
CompletelyNormalSpace.toNormalSpace
CompletelyNormalSpace.of_regularSpace_secondCountableTopology
T3Space.toRegularSpace
instSecondCountableTopology
isEmbedding_coe πŸ“–mathematicalβ€”Topology.IsEmbedding
UpperHalfPlane
Complex
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”Function.Injective.isEmbedding_induced
coe_injective
isOpenEmbedding_coe πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
UpperHalfPlane
Complex
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
coe
β€”isEmbedding_coe
range_coe
mem_verticalStrip_iff πŸ“–mathematicalβ€”UpperHalfPlane
Set
Set.instMembership
verticalStrip
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
re
im
β€”β€”
ofComplex_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
Complex
UpperHalfPlane
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
coe
β€”Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv
isOpenEmbedding_coe
ofComplex_apply_eq_ite πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
Complex
UpperHalfPlane
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
Real
Real.instLT
Real.instZero
Complex.im
Real.decidableLT
instInhabited
β€”ofComplex_apply
LT.lt.not_ge
im_pos
ofComplex_apply_eq_of_im_nonpos πŸ“–mathematicalReal
Real.instLE
Complex.im
Real.instZero
OpenPartialHomeomorph.toFun'
Complex
UpperHalfPlane
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
β€”ofComplex_apply_of_im_nonpos
ofComplex_apply_of_im_nonpos πŸ“–mathematicalReal
Real.instLE
Complex.im
Real.instZero
OpenPartialHomeomorph.toFun'
Complex
UpperHalfPlane
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
instInhabited
β€”ofComplex_apply_eq_ite
ofComplex_apply_of_im_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
Complex.im
OpenPartialHomeomorph.toFun'
Complex
UpperHalfPlane
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instTopologicalSpace
ofComplex
β€”ofComplex_apply
subset_verticalStrip_of_isCompact πŸ“–mathematicalIsCompact
UpperHalfPlane
instTopologicalSpace
Real
Real.instLT
Real.instZero
Set
Set.instHasSubset
verticalStrip
β€”Set.eq_empty_or_nonempty
Real.zero_lt_one
Set.empty_subset
IsCompact.exists_isMaxOn
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.continuousOn
Continuous.comp
continuous_abs
Real.instIsOrderedAddMonoid
continuous_re
IsCompact.exists_isMinOn
instClosedIicTopology
continuous_im
im_pos
isMaxOn_iff
isMinOn_iff
verticalStrip_anti_right πŸ“–mathematicalReal
Real.instLE
Set
UpperHalfPlane
Set.instHasSubset
verticalStrip
β€”verticalStrip_mono
le_rfl
verticalStrip_mono πŸ“–mathematicalReal
Real.instLE
Set
UpperHalfPlane
Set.instHasSubset
verticalStrip
β€”LE.le.trans
verticalStrip_mono_left πŸ“–mathematicalReal
Real.instLE
Set
UpperHalfPlane
Set.instHasSubset
verticalStrip
β€”verticalStrip_mono
le_rfl

---

← Back to Index