Documentation Verification Report

DoublyStochasticMatrix

πŸ“ Source: Mathlib/Analysis/Convex/DoublyStochasticMatrix.lean

Statistics

MetricCount
DefinitionsdoublyStochastic
1
Theoremsconvex_doublyStochastic, doublyStochastic_eq_rowStochastic_inf_colStochastic, exists_mem_doublyStochastic_eq_smul_iff, le_one_of_mem_doublyStochastic, mem_doublyStochastic, mem_doublyStochastic_iff_mem_rowStochastic_and_mem_colStochastic, mem_doublyStochastic_iff_sum, mulVec_one_of_mem_doublyStochastic, nonneg_of_mem_doublyStochastic, one_vecMul_of_mem_doublyStochastic, permMatrix_mem_doublyStochastic, reindex_mem_doublyStochastic, reindex_mem_doublyStochastic_iff, sum_col_of_mem_doublyStochastic, sum_mulVec_of_mem_doublyStochastic, sum_row_of_mem_doublyStochastic, transpose_mem_doublyStochastic_iff
17
Total18

(root)

Definitions

NameCategoryTheorems
doublyStochastic πŸ“–CompOp
11 mathmath: reindex_mem_doublyStochastic_iff, mem_doublyStochastic_iff_sum, doublyStochastic_eq_rowStochastic_inf_colStochastic, mem_doublyStochastic_iff_mem_rowStochastic_and_mem_colStochastic, doublyStochastic_eq_convexHull_permMatrix, extremePoints_doublyStochastic, mem_doublyStochastic, convex_doublyStochastic, transpose_mem_doublyStochastic_iff, permMatrix_mem_doublyStochastic, exists_mem_doublyStochastic_eq_smul_iff

Theorems

NameKindAssumesProvesValidatesDepends On
convex_doublyStochastic πŸ“–mathematicalβ€”Convex
Matrix
Matrix.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Matrix.smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
SetLike.coe
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Submonoid.instSetLike
doublyStochastic
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toPosMulMono
Finset.sum_congr
Finset.sum_add_distrib
mul_one
doublyStochastic_eq_rowStochastic_inf_colStochastic πŸ“–mathematicalβ€”doublyStochastic
Submonoid
Matrix
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
Submonoid.instMin
Matrix.rowStochastic
Matrix.colStochastic
β€”Submonoid.ext
exists_mem_doublyStochastic_eq_smul_iff πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
IsStrictOrderedRing.toIsOrderedRing
Matrix.smul
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”IsStrictOrderedRing.toIsOrderedRing
Finset.sum_congr
mul_nonneg
IsOrderedRing.toPosMulMono
mem_doublyStochastic_iff_sum
mul_one
eq_or_lt_of_le
zero_smul
Submonoid.one_mem
Matrix.ext
Finset.sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toPosMulStrictMono
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
inv_mul_cancelβ‚€
LT.lt.ne'
smul_inv_smulβ‚€
le_one_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Preorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”sum_row_of_mem_doublyStochastic
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Finset.mem_univ
mem_doublyStochastic πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Matrix.mulVec
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Matrix.vecMul
β€”β€”
mem_doublyStochastic_iff_mem_rowStochastic_and_mem_colStochastic πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Matrix.rowStochastic
Matrix.colStochastic
β€”doublyStochastic_eq_rowStochastic_inf_colStochastic
Submonoid.mem_inf
mem_doublyStochastic_iff_sum πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finset.sum_congr
mul_one
one_mul
mulVec_one_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Matrix.mulVec
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”mem_doublyStochastic
nonneg_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”β€”
one_vecMul_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Matrix.vecMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.instOne
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”mem_doublyStochastic
permMatrix_mem_doublyStochastic πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Equiv.Perm.permMatrix
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
reindex_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
β€”β€”
reindex_mem_doublyStochastic_iff πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.reindex
β€”β€”
sum_col_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finset.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”mem_doublyStochastic_iff_sum
sum_mulVec_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finset.univ
Matrix.mulVec
β€”Matrix.sum_mulVec_of_mem_colStochastic
sum_row_of_mem_doublyStochastic πŸ“–mathematicalMatrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Finset.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”mem_doublyStochastic_iff_sum
transpose_mem_doublyStochastic_iff πŸ“–mathematicalβ€”Matrix
Submonoid
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Matrix.nonAssocSemiring
Semiring.toNonAssocSemiring
SetLike.instMembership
Submonoid.instSetLike
doublyStochastic
Matrix.transpose
β€”β€”

---

← Back to Index