π Source: Mathlib/Analysis/Convex/Gauge.lean
gauge
gaugeSeminorm
gauge_set_nonempty
starConvex
gauge_le
lipschitzWith_gauge
lipschitz_gauge
uniformContinuous_gauge
gaugeSeminorm_ball
gauge_ball
comap_gauge_nhds_zero
comap_gauge_nhds_zero_le
continuousAt_gauge
continuousAt_gauge_zero
continuous_gauge
exists_lt_of_gauge_lt
gaugeSeminorm_ball_one
gaugeSeminorm_lt_one_of_isOpen
gaugeSeminorm_toFun
gauge_add_le
gauge_closedBall
gauge_closure_zero
gauge_def
gauge_def'
gauge_empty
gauge_eq_one_iff_mem_frontier
gauge_eq_zero
gauge_le_eq
gauge_le_of_mem
gauge_le_one_iff_mem_closure
gauge_le_one_of_mem
gauge_lt_eq
gauge_lt_eq'
gauge_lt_of_mem_smul
gauge_lt_one_eq_interior
gauge_lt_one_eq_self_of_isOpen
gauge_lt_one_iff_mem_interior
gauge_lt_one_of_mem_of_isOpen
gauge_lt_one_subset_self
gauge_mono
gauge_neg
gauge_neg_set_eq_gauge_neg
gauge_neg_set_neg
gauge_nonneg
gauge_norm_smul
gauge_of_subset_zero
gauge_pos
gauge_smul
gauge_smul_left
gauge_smul_left_of_nonneg
gauge_smul_of_nonneg
gauge_sum_le
gauge_unit_ball
gauge_zero
gauge_zero'
interior_subset_gauge_lt_one
le_gauge_of_notMem
le_gauge_of_subset_closedBall
mem_closure_of_gauge_le_one
mem_frontier_of_gauge_eq_one
mem_openSegment_of_gauge_lt_one
mul_gauge_le_norm
one_le_gauge_of_notMem
self_subset_gauge_le_one
tendsto_gauge_nhds_zero
tendsto_gauge_nhds_zero_nhdsGE
Absorbent
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
Set.Nonempty
setOf
Real.instLT
Real.instZero
Set
Set.instMembership
Set.smulSet
Absorbs.exists_pos
Eq.ge
Real.norm_of_nonneg
LT.lt.le
Balanced
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
StarConvex
Real.partialOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
starConvex_zero_iff
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.smul_mem_smul_set
Convex
Real.instLE
convex_iInter
smul
Set.eq_empty_iff_forall_notMem
LE.le.trans
convex_empty
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NormedSpace.toModule
Real.normedField
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Set.instHasSubset
Metric.ball
SeminormedAddCommGroup.toPseudoMetricSpace
NNReal.toReal
LipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
Real.metricSpace
NNReal.instInv
absorbent_ball_zero
LipschitzWith.of_le_add_mul
add_sub_cancel
Absorbent.mono
le_imp_le_of_le_of_le
add_le_add_right
le_refl
le_of_lt
Mathlib.Meta.Positivity.nnreal_coe_pos
dist_eq_norm
div_eq_inv_mul
NNReal.coe_inv
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Metric.mem_nhds_iff
UniformContinuous
LipschitzWith.uniformContinuous
ball
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Real.instOne
Real.instRCLike
IsScalarTower.left
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
balanced_ball_zero
convex_ball
NormedField.toNormedSpace
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
RCLike.charZero_rclike
DFunLike.coe_injective
DFunLike.coe
Seminorm
instFunLike
Set.eq_empty_or_nonempty
gauge.eq_1
Real.sInf_empty
LE.le.lt_of_ne
NonnegHomClass.apply_nonneg
AddGroupSeminormClass.toNonnegHomClass
SeminormClass.toAddGroupSeminormClass
instSeminormClass
Nat.instAtLeastTwoHAddOfNat
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_two
Eq.subset
Set.instReflSubset
mem_ball_zero
SeminormClass.map_smul_eq_mul
Real.norm_eq_abs
abs_of_pos
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
inv_mul_lt_iffβ
mul_one
lt_mul_of_one_lt_left
IsStrictOrderedRing.toMulPosStrictMono
one_lt_two
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
smul_inv_smulβ
LT.lt.ne'
IsGLB.csInf_eq
mul_le_of_le_one_right
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_forall_pos_le_add
LinearOrderedSemiField.toDenselyOrdered
AddGroup.existsAddOfLE
contravariant_lt_of_covariant_le
Right.add_pos_of_nonneg_of_pos
lt_add_of_pos_right
gauge_gaugeRescale
Convex.uniformContinuous_gauge
Convex.gauge_le
gauge_gaugeRescale'
gaugeRescale_def
Convex.lipschitz_gauge
Seminorm.gauge_ball
Convex.lipschitzWith_gauge
gauge_gaugeRescale_le
Seminorm.gaugeSeminorm_ball
Bornology.IsVonNBounded
Filter.comap
LE.le.antisymm
absorbent_nhds_zero
Filter.Tendsto.le_comap
Preorder.toLE
Filter.instPartialOrder
Filter.mp_mem
Filter.preimage_mem_comap
gt_mem_nhds
instOrderTopologyReal
Filter.univ_mem'
lt_inv_commβ
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
le_abs_self
ContinuousAt
Filter.HasBasis.tendsto_right_iff
nhds_basis_Icc_pos
instNoMaxOrderOfNontrivial
Real.instNontrivial
map_add_left_nhds_zero
Filter.eventually_map
Filter.inter_mem
set_smul_mem_nhds_zero_iff
ContinuousSMul.continuousConstSMul
neg_mem_nhds_zero
sub_le_iff_le_add
add_neg_cancel_right
Set.mem_neg
ContinuousAt.eq_1
Continuous
continuous_iff_continuousAt
exists_lt_of_csInf_lt
Absorbent.gauge_set_nonempty
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
IsOpen
Seminorm.ball
Seminorm.ball_zero_eq
Absorbent.zero_mem
NontriviallyNormedField.cobounded_neBot
Seminorm.instFunLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Real.instAdd
le_of_forall_pos_lt_add
half_pos
add_pos'
Convex.add_smul
Set.add_mem_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_nonpos
Mathlib.Tactic.Linarith.sub_nonpos_of_le
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
SeminormedAddCommGroup.toNorm
LE.le.eq_or_lt
Metric.ball_zero
div_zero
smul_unitBall_of_pos
IsStrictOrderedRing.toIsStrictOrderedModule
Algebra.to_smulCommClass
IsScalarTower.right
norm_neg
Pi.smul_apply
smul_eq_mul
abs_of_nonneg
Metric.closedBall
Metric.closedBall_zero'
Set.singleton_zero
le_antisymm
Metric.ball_subset_closedBall
self_mem_nhdsWithin
Membership.mem.out
Metric.closedBall_subset_ball
le_of_tendsto
instClosedIicTopology
OrderTopology.to_orderClosedTopology
nhdsGT_neBot
Filter.Tendsto.div
IsTopologicalDivisionRing.toContinuousInvβ
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_const_nhds
inf_le_left
closure
Set.zero
Pi.instZero
norm_smul
NormedSpace.toNormSMulClass
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
LE.le.eq_or_lt'
norm_nonneg
Set.ext
csInf_Ioi
Set.eq_empty_of_forall_notMem
InfSet.sInf
Real.instInfSet
Set.Ioi
Real.instPreorder
Real.instInv
Set.mem_smul_set_iff_inv_smul_memβ
Set.instEmptyCollection
Set.sep_false
frontier
eq_iff_le_not_lt
by_contra
IsOpen.mem_nhds
isOpen_compl_singleton
Filter.HasBasis.mem_iff
Filter.HasBasis.comap
nhds_basis_zero_abs_lt
abs_zero
Set.iInter
LE.le.trans_lt
Convex.smul_mem_of_zero_mem
inv_pos_of_pos
inv_mul_le_iffβ
mul_inv_cancel_rightβ
smul_smul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
le_of_not_gt
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Set.mem_singleton_iff
Set.zero_smul_set_subset
csInf_le
mem_of_mem_nhds
le_on_closure
Continuous.continuousOn
continuousOn_const
zero_le_one
one_smul
Set.iUnion
Set.Ioo
Set.isScalarTower
inv_nonneg
interior
Set.Subset.antisymm
Convex.openSegment_interior_self_subset_interior
mem_interior_iff_mem_nhds
HasSubset.Subset.antisymm
Set.instAntisymmSubset
IsOpen.interior_eq
Set.ext_iff
Convex.openSegment_subset
Pi.hasLe
csInf_le_csInf
Set.setOf_subset_setOf_of_imp
Mathlib.Tactic.GCongr.and_right_mono
Set.mem_of_subset_of_mem
Set.smul_set_mono
NegZeroClass.toNeg
neg_neg
smul_neg
Set.neg
Real.sInf_nonneg
NormedField.toNorm
RCLike.real_smul_eq_coe_smul
Balanced.smul_mem_iff
Balanced.smul
IsScalarTower.to_smulCommClass'
RCLike.norm_ofReal
abs_norm
Set.subset_singleton_iff_eq
LE.le.lt_iff_ne'
Real.instMul
Function.hasSMul
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
MulActionWithZero.toSMulWithZero
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
abs
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddGroupWithOne.toAddGroup
DivisionRing.toRing
Field.toDivisionRing
abs_nonneg
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
abs_choice
Set.neg_smul_set
Set.smul_set_neg
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
inv_zero
zero_smul
Real.sInf_smul_of_nonneg
IsStrictOrderedModule.toIsOrderedModule
smul_pos
IsStrictOrderedModule.toPosSMulStrictMono
smul_invβ
smul_assoc
inv_smul_smulβ
Set.mem_Ioi
inv_inv
inv_ne_zero
Finset.sum
Real.instAddCommMonoid
Finset.le_sum_of_subadditive
Eq.le
ball_normSeminorm
coe_normSeminorm
smul_zero
Set.sep_true
eq_or_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Real.instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
ne_of_gt
Filter.Tendsto.mono_left
Filter.Tendsto.smul
Filter.Tendsto.invβ
Filter.tendsto_id
one_ne_zero
Ioo_mem_nhdsLT
one_pos
inv_one
Filter.Eventually.exists
nhdsLT_neBot
instNoMinOrderOfNontrivial
Absorbs
Set.instSingletonSet
le_csInf
Set.singleton_subset_iff
not_lt
LT.lt.trans
div_le_one_of_leβ
SemigroupAction.mul_smul
mul_inv_cancel_leftβ
ESeminormedAddMonoid.toAddMonoid
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toNorm
Ico_mem_nhdsLT
Set.mem_setOf_eq
mul_lt_one_of_nonneg_of_lt_one_left
mem_closure_of_tendsto
Continuous.tendsto'
Continuous.smul
continuous_id'
continuous_const
LT.lt.ne
openSegment
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel
zero_add
le_or_gt
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
mul_comm
le_div_iffβ
Filter.Tendsto
Filter.Tendsto.mono_right
nhdsWithin
Set.Ici
nhdsGE_basis_Icc
---
β Back to Index