Documentation Verification Report

Join

πŸ“ Source: Mathlib/Analysis/Convex/Join.lean

Statistics

MetricCount
DefinitionsJoin, Join, convexJoin
3
TheoremsconvexHull_union, convexJoin, convexHull_insert, convexHull_union, convexJoin_assoc, convexJoin_assoc_aux, convexJoin_comm, convexJoin_convexJoin_convexJoin_comm, convexJoin_empty_left, convexJoin_empty_right, convexJoin_iUnion_left, convexJoin_iUnion_right, convexJoin_left_comm, convexJoin_mono, convexJoin_mono_left, convexJoin_mono_right, convexJoin_right_comm, convexJoin_segment_singleton, convexJoin_segments, convexJoin_singleton_left, convexJoin_singleton_right, convexJoin_singleton_segment, convexJoin_singletons, convexJoin_subset, convexJoin_subset_convexHull, convexJoin_union_left, convexJoin_union_right, mem_convexJoin, segment_subset_convexJoin, subset_convexJoin_left, subset_convexJoin_right
31
Total34

CategoryTheory

Definitions

NameCategoryTheorems
Join πŸ“–CompData
122 mathmath: Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, Join.pseudofunctorLeft_mapId_inv_toNatTrans_app, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map, Join.inlCompFromSum_hom_app, Join.mapPairId_hom_app, Join.mapWhiskerLeft_app, Join.pseudofunctorRight_mapComp_inv_toNatTrans_app, Join.mapPairEquiv_inverse, Join.mapPairEquiv_unitIso, Join.mapPairEquiv_counitIso, Join.inclRightCompOpEquivInverse_inv_app_op, Join.id_right, Join.mapWhiskerRight_leftUnitor_hom, Join.isoMkFunctor_hom_app, Join.mapWhiskerLeft_whiskerRight, Join.isEquivalenceMapPair, Join.mkFunctor_obj_left, Join.opEquiv_functor_obj_op_right, Join.mapWhiskerLeft_whiskerLeft, Join.inrCompFromSum_hom_app, Join.mkFunctor_edgeTransform, Join.mapPair_obj_right, Join.mapIsoWhiskerLeft_hom, Join.mapPair_map_inclRight, Join.pseudofunctorLeft_mapId_hom_toNatTrans_app, Join.instFinalInclRightOfIsConnected, Join.opEquiv_inverse_map_inclRight_op, Join.mkFunctor_map_inclLeft, Join.mapWhiskerRight_comp, Join.pseudofunctorLeft_mapComp_hom_toNatTrans_app, Join.inclRightFaithful, Join.mapWhiskerRight_whiskerRight, Join.mkFunctor_map_inclRight, Join.mapPairComp_hom_app_right, Join.mapWhiskerRight_app, Join.mapWhiskerLeft_whiskerRight_assoc, Join.mapPair_map_inclLeft, Join.isoMkFunctor_inv_app, Join.mapIsoWhiskerRight_inv, Join.pseudofunctorLeft_mapComp_inv_toNatTrans_app, Join.fromSum_map_inr, Join.opEquiv_functor_map_op_edge, Join.mapIsoWhiskerRight_hom_app, Join.opEquiv_functor_map_op_inclRight, Join.opEquiv_inverse_obj_right_op, Join.mkFunctorLeft_hom_app, Join.mapWhiskerLeft_associator_hom, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_id, Join.inclLeft_obj, Join.mapPairComp_inv_app_right, Join.mapPairLeft_inv_app, Join.pseudofunctorRight_mapId_hom_toNatTrans_app, Join.opEquiv_inverse_map_inclLeft_op, Join.homInduction_left, Join.InclLeftCompRightOpOpEquivFunctor_hom_app, Join.mapWhiskerRight_associator_hom, Join.inclRightCompOpEquivInverse_hom_app_op, Join.pseudofunctorRight_mapId_inv_toNatTrans_app, Join.homInduction_right, Join.inclRight_obj, Join.opEquiv_functor_obj_op_left, Join.opEquiv_inverse_obj_left_op, Join.instFaithfulSumFromSum, Join.mapWhisker_exchange, Join.inclLeftCompOpEquivInverse_inv_app_op, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Join.mapPairId_inv_app, Join.mapWhiskerRight_whiskerLeft, Join.inclRightFull, Join.pseudofunctorRight_mapComp_hom_toNatTrans_app, Join.mapWhiskerRight_whiskerLeft_assoc, Join.mkFunctor_map_edge, Join.mapPairComp_hom_app_left, Join.inclLeftCompOpEquivInverse_hom_app_op, Join.mapWhiskerLeft_associator_hom_assoc, Join.mapWhiskerLeft_rightUnitor_hom, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, Join.mapWhiskerRight_id, Join.mapWhiskerRight_rightUnitor_hom, Join.opEquiv_inverse_map_edge_op, Join.mapPairComp_inv_app_left, Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_mapβ‚‚_toNatTrans_app, Join.InclLeftCompRightOpOpEquivFunctor_inv_app, Join.mapIsoWhiskerRight_hom, Join.instInitialInclLeftOfIsConnected, Join.mapPair_obj_left, Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_Ξ±, Join.InclRightCompRightOpOpEquivFunctor_inv_app, Join.mkFunctorRight_inv_app, Join.mapWhiskerLeft_whiskerLeft_assoc, Join.mapWhiskerLeft_id, Join.mapWhiskerRight_whiskerRight_assoc, Join.mapWhiskerLeft_leftUnitor_hom, Join.fromSum_obj, Join.inrCompFromSum_inv_app, Join.mkFunctorLeft_inv_app, Join.mapPairLeft_hom_app, Join.mapIsoWhiskerLeft_inv_app, Join.mkFunctor_obj_right, Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_obj_str_comp, Join.mapPairRight_hom_app, Join.opEquiv_functor_map_op_inclLeft, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, Join.id_left, Join.mapIsoWhiskerLeft_hom_app, Join.eq_mkNatTrans, Join.mapPairEquiv_functor, Join.instEssSurjSumFromSum, Join.fromSum_map_inl, Join.mapIsoWhiskerLeft_inv, Join.inclLeftFull, Join.mapWhiskerLeft_comp, Join.pseudofunctorLeft_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_obj, Join.InclRightCompRightOpOpEquivFunctor_hom_app, Join.mapPairRight_inv_app, Join.mkFunctorRight_hom_app, Join.inlCompFromSum_inv_app, Join.inclLeftFaithful, Join.edgeTransform_app, Join.mapIsoWhiskerRight_inv_app, Join.pseudofunctorRight_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor_map

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
convexHull_union πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Nonempty
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Set.instUnion
convexJoin
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
convexHull_min
Set.union_subset
subset_convexJoin_left
IsStrictOrderedRing.toIsOrderedRing
subset_convexJoin_right
convexJoin
convexJoin_subset_convexHull
convexJoin πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
convexJoinβ€”exists_mem_add_smul_eq
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_eval₃
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass

Relation

Definitions

NameCategoryTheorems
Join πŸ“–MathDef
15 mathmath: FreeGroup.Red.church_rosser, FreeGroup.join_red_of_step, church_rosser, FreeAddGroup.join_red_of_step, FreeAddGroup.Red.church_rosser, FreeGroup.equivalence_join_red, reflexive_join, FreeAddGroup.Red.exact, FreeGroup.Red.exact, symmetric_join, FreeAddGroup.equivalence_join_red, join_of_single, equivalence_join_reflTransGen, FreeGroup.eqvGen_step_iff_join_red, FreeAddGroup.eqvGen_step_iff_join_red

(root)

Definitions

NameCategoryTheorems
convexJoin πŸ“–CompOp
31 mathmath: convexHull_insert, convexJoin_singletons, convexJoin_subset, convexJoin_singleton_left, convexJoin_segments, convexJoin_union_right, convexJoin_iUnion_right, convexJoin_mono, Convex.convexHull_union, convexJoin_mono_right, segment_subset_convexJoin, convexJoin_segment_singleton, convexJoin_singleton_segment, convexJoin_empty_left, convexJoin_iUnion_left, convexJoin_assoc, convexJoin_mono_left, convexJoin_subset_convexHull, convexJoin_convexJoin_convexJoin_comm, convexJoin_empty_right, convexJoin_union_left, subset_convexJoin_left, subset_convexJoin_right, convexJoin_left_comm, convexJoin_assoc_aux, convexJoin_right_comm, convexHull_union, convexJoin_comm, Convex.convexJoin, mem_convexJoin, convexJoin_singleton_right

Theorems

NameKindAssumesProvesValidatesDepends On
convexHull_insert πŸ“–mathematicalSet.NonemptyDFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
Set.instInsert
convexJoin
Set.instSingletonSet
β€”Set.insert_eq
convexHull_union
Set.singleton_nonempty
convexHull_singleton
convexHull_union πŸ“–mathematicalSet.NonemptyDFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
Set.instUnion
convexJoin
β€”convexHull_convexHull_union_left
convexHull_convexHull_union_right
Convex.convexHull_union
convex_convexHull
Set.Nonempty.convexHull
convexJoin_assoc πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
convexJoin_assoc_aux
convexJoin_comm
convexJoin_assoc_aux πŸ“–mathematicalβ€”Set
Set.instHasSubset
convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
β€”LE.le.eq_or_lt
left_mem_segment
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Tactic.LinearCombination.eq_of_eq
AddRightCancelSemigroup.toIsRightCancelAdd
Mathlib.Tactic.LinearCombination.smul_eq_const
Mathlib.Tactic.LinearCombination.eq_rearrange
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
add_zero
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.zero_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_const
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_of_lt
div_pos
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.LinearCombination.add_eq_eq
Mathlib.Tactic.LinearCombination.mul_const_eq
Mathlib.Tactic.Module.NF.eq_cons_cons
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
convexJoin_comm πŸ“–mathematicalβ€”convexJoinβ€”Set.iUnionβ‚‚_comm
Set.iUnion_congr_Prop
segment_symm
convexJoin_convexJoin_convexJoin_comm πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
β€”convexJoin_right_comm
convexJoin_empty_left πŸ“–mathematicalβ€”convexJoin
Set
Set.instEmptyCollection
β€”Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
convexJoin_empty_right πŸ“–mathematicalβ€”convexJoin
Set
Set.instEmptyCollection
β€”Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
convexJoin_iUnion_left πŸ“–mathematicalβ€”convexJoin
Set.iUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_comm
convexJoin_iUnion_right πŸ“–mathematicalβ€”convexJoin
Set.iUnion
β€”convexJoin_comm
convexJoin_iUnion_left
convexJoin_left_comm πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
β€”convexJoin_comm
convexJoin_mono πŸ“–mathematicalSet
Set.instHasSubset
convexJoinβ€”Set.biUnion_mono
Set.biUnion_subset_biUnion_left
convexJoin_mono_left πŸ“–mathematicalSet
Set.instHasSubset
convexJoinβ€”convexJoin_mono
Set.Subset.rfl
convexJoin_mono_right πŸ“–mathematicalSet
Set.instHasSubset
convexJoinβ€”convexJoin_mono
Set.Subset.rfl
convexJoin_right_comm πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
β€”convexJoin_assoc
convexJoin_comm
convexJoin_segment_singleton πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instSingletonSet
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Set.instInsert
β€”Set.pair_eq_singleton
convexJoin_segments
segment_same
IsStrictOrderedRing.toZeroLEOneClass
convexJoin_segments πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Set.instInsert
Set.instSingletonSet
β€”IsStrictOrderedRing.toIsOrderedRing
convexHull_insert
Set.insert_nonempty
Set.singleton_nonempty
convexJoin_assoc
convexHull_singleton
convexJoin_singleton_left πŸ“–mathematicalβ€”convexJoin
Set
Set.instSingletonSet
Set.iUnion
Set.instMembership
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
convexJoin_singleton_right πŸ“–mathematicalβ€”convexJoin
Set
Set.instSingletonSet
Set.iUnion
Set.instMembership
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
convexJoin_singleton_segment πŸ“–mathematicalβ€”convexJoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
Set
Set.instSingletonSet
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Set.instInsert
β€”segment_same
IsStrictOrderedRing.toZeroLEOneClass
convexJoin_segments
Set.insert_idem
convexJoin_singletons πŸ“–mathematicalβ€”convexJoin
Set
Set.instSingletonSet
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”convexJoin_singleton_right
Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
convexJoin_subset πŸ“–mathematicalSet
Set.instHasSubset
Convex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
convexJoinβ€”Set.iUnionβ‚‚_subset
Convex.segment_subset
convexJoin_subset_convexHull πŸ“–mathematicalβ€”Set
Set.instHasSubset
convexJoin
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Set.instUnion
β€”convexJoin_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_union_left
subset_convexHull
Set.subset_union_right
convex_convexHull
convexJoin_union_left πŸ“–mathematicalβ€”convexJoin
Set
Set.instUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_or
Set.iUnion_union_distrib
convexJoin_union_right πŸ“–mathematicalβ€”convexJoin
Set
Set.instUnion
β€”convexJoin_comm
convexJoin_union_left
mem_convexJoin πŸ“–mathematicalβ€”Set
Set.instMembership
convexJoin
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
segment_subset_convexJoin πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
segment
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
convexJoin
β€”Set.subset_iUnionβ‚‚_of_subset
Set.subset_iUnionβ‚‚
subset_convexJoin_left πŸ“–mathematicalSet.NonemptySet
Set.instHasSubset
convexJoin
β€”segment_subset_convexJoin
left_mem_segment
IsOrderedRing.toZeroLEOneClass
subset_convexJoin_right πŸ“–mathematicalSet.NonemptySet
Set.instHasSubset
convexJoin
β€”subset_convexJoin_left
convexJoin_comm

---

← Back to Index