Documentation Verification Report

Measure

📁 Source: Mathlib/Analysis/Convex/Measure.lean

Statistics

MetricCount
Definitions0
TheoremsaddHaar_frontier, nullMeasurableSet
2
Total2

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
addHaar_frontier 📖mathematicalConvex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
DFunLike.coe
MeasureTheory.Measure
Set
ENNReal
MeasureTheory.Measure.instFunLike
frontier
instZeroENNReal
ne_or_eq
MeasureTheory.measure_mono_null
MeasureTheory.Measure.instOuterMeasureClass
HasSubset.Subset.trans
Set.instIsTransSubset
frontier_subset_closure
closure_minimal
subset_affineSpan
AffineSubspace.closed_of_finiteDimensional
Real.instCompleteSpace
FiniteDimensional.finiteDimensional_submodule
MeasureTheory.Measure.addHaar_affineSubspace
interior_nonempty_iff_affineSpan_eq_top
LT.lt.ne
Bornology.IsBounded.measure_lt_top
FiniteDimensional.proper_real
MeasureTheory.Measure.IsAddHaarMeasure.toIsFiniteMeasureOnCompacts
Bornology.IsBounded.subset
interior_subset
LE.le.trans_eq
MeasureTheory.measure_mono
closure_subset_image_homothety_interior_of_one_lt
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
MeasureTheory.Measure.addHaar_image_homothety
NNReal.coe_pow
NNReal.abs_eq
ENNReal.ofReal_coe_nnreal
Filter.mem_of_superset
self_mem_nhdsWithin
ge_of_tendsto
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
nhdsGT_neBot
NNReal.instOrderTopology
NNReal.instDenselyOrdered
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
Filter.Tendsto.mono_left
Continuous.tendsto'
Continuous.comp
ENNReal.continuous_mul_const
ENNReal.continuous_coe
continuous_pow
IsTopologicalSemiring.toContinuousMul
NNReal.instIsTopologicalSemiring
one_pow
one_mul
nhdsWithin_le_nhds
frontier.eq_1
MeasureTheory.measure_diff
interior_subset_closure
IsOpen.nullMeasurableSet
BorelSpace.opensMeasurable
isOpen_interior
tsub_eq_zero_iff_le
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
MeasureTheory.measure_iUnion_null
instCountableNat
inter
convex_ball
interior_inter
IsOpen.interior_eq
Metric.isOpen_ball
Metric.mem_ball_self
add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg
Real.instIsOrderedRing
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Metric.isBounded_ball
Set.inter_subset_right
Real.instIsStrictOrderedRing
Set.mem_iUnion
frontier_inter_open_inter
nullMeasurableSet 📖mathematicalConvex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
MeasureTheory.NullMeasurableSetnullMeasurableSet_of_null_frontier
BorelSpace.opensMeasurable
addHaar_frontier

---

← Back to Index