📁 Source: Mathlib/Analysis/Convex/Piecewise.lean
concaveOn_univ_piecewise_Ici_of_antitoneOn_Ici_monotoneOn_Iic
concaveOn_univ_piecewise_Iic_of_monotoneOn_Iic_antitoneOn_Ici
convexOn_univ_piecewise_Ici_of_monotoneOn_Ici_antitoneOn_Iic
convexOn_univ_piecewise_Iic_of_antitoneOn_Iic_monotoneOn_Ici
ConcaveOn
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iic
AntitoneOn
MonotoneOn
Set.univ
Set.piecewise
Set.decidableMemIci
LinearOrder.toDecidableLE
neg_convexOn_iff
Set.piecewise_neg
ConcaveOn.neg
AntitoneOn.neg
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
MonotoneOn.neg
Set.decidableMemIic
ConvexOn
le_iff_lt_or_eq
convex_univ
le_or_gt
LE.le.trans
Convex.combo_le_max
max_le
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
Set.notMem_Iic
add_le_add_right
smul_le_smul_of_nonneg_left
le_of_lt
Set.self_mem_Iic
Set.self_mem_Ici
LT.lt.le
add_le_add_left
LT.lt.trans_le
lt_min
Convex.min_le_combo
---
← Back to Index