Documentation Verification Report

Basic

📁 Source: Mathlib/Analysis/Convex/SpecificFunctions/Basic.lean

Statistics

MetricCount
Definitions0
Theoremsexp_mul_le_cosh_add_mul_sinh, convexOn_exp, convexOn_rpow, convexOn_rpow_left, one_add_mul_self_le_rpow_one_add, one_add_mul_self_lt_rpow_one_add, rpow_one_add_le_one_add_mul_self, rpow_one_add_lt_one_add_mul_self, strictConcaveOn_log_Iio, strictConcaveOn_log_Ioi, strictConvexOn_exp, strictConvexOn_rpow
12
Total12

Real

Theorems

NameKindAssumesProvesValidatesDepends On
exp_mul_le_cosh_add_mul_sinh 📖mathematicalReal
instLE
abs
lattice
instAddGroup
instOne
exp
instMul
instAdd
cosh
sinh
—Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
convexOn_exp
Set.mem_univ
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
abs_le
instIsOrderedAddMonoid
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.add_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
cosh_eq
sinh_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
convexOn_exp 📖mathematical—ConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.univ
Real.exp
—StrictConvexOn.convexOn
strictConvexOn_exp
convexOn_rpow 📖mathematicalReal
Real.instLE
Real.instOne
ConvexOn
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
Real.instPow
—eq_or_lt_of_le
Real.rpow_one
convexOn_id
convex_Ici
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
StrictConvexOn.convexOn
strictConvexOn_rpow
convexOn_rpow_left 📖mathematicalReal
Real.instLT
Real.instZero
ConvexOn
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.univ
Real.instPow
—smulCommClass_self
Algebra.to_smulCommClass
IsScalarTower.right
Real.rpow_def_of_pos
ConvexOn.comp_linearMap
convexOn_exp
one_add_mul_self_le_rpow_one_add 📖mathematicalReal
Real.instLE
Real.instNeg
Real.instOne
Real.instAdd
Real.instMul
Real.instPow
—eq_or_lt_of_le
one_mul
Real.rpow_one
MulZeroClass.mul_zero
add_zero
Real.one_rpow
LT.lt.le
one_add_mul_self_lt_rpow_one_add
one_add_mul_self_lt_rpow_one_add 📖mathematicalReal
Real.instLE
Real.instNeg
Real.instOne
Real.instLT
Real.instAdd
Real.instMul
Real.instPow
—LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
eq_or_lt_of_le
add_neg_cancel
Real.zero_rpow
LT.lt.ne'
mul_neg_one
add_neg_lt_iff_lt_add
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
neg_lt_iff_pos_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
le_or_gt
LE.le.trans_lt
Real.rpow_pos_of_pos
add_eq_left
Mathlib.Tactic.Contrapose.contrapose₄
eq_false_intro
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.rpow_def_of_pos
Real.exp_log
Real.exp_strictMono
lt_or_gt_of_ne
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
div_lt_div_right_of_neg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_sub_cancel_left
Real.log_one
sub_zero
div_div
StrictConcaveOn.secant_strict_mono
strictConcaveOn_log_Ioi
zero_lt_one'
add_lt_add_right
mul_lt_of_one_lt_left
AddGroup.existsAddOfLE
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
div_lt_div_iff_of_pos_right
lt_mul_of_one_lt_left
rpow_one_add_le_one_add_mul_self 📖mathematicalReal
Real.instLE
Real.instNeg
Real.instOne
Real.instZero
Real.instPow
Real.instAdd
Real.instMul
—eq_or_lt_of_le
Real.rpow_zero
MulZeroClass.zero_mul
add_zero
Real.rpow_one
one_mul
Real.one_rpow
MulZeroClass.mul_zero
LT.lt.le
rpow_one_add_lt_one_add_mul_self
rpow_one_add_lt_one_add_mul_self 📖mathematicalReal
Real.instLE
Real.instNeg
Real.instOne
Real.instLT
Real.instZero
Real.instPow
Real.instAdd
Real.instMul
—eq_or_lt_of_le
add_neg_cancel
Real.zero_rpow
LT.lt.ne'
mul_neg_one
lt_add_neg_iff_add_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
zero_add
neg_lt_iff_pos_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
lt_or_gt_of_ne
LT.lt.trans
lt_mul_of_lt_one_left
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
neg_one_lt_zero
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
add_eq_left
Mathlib.Tactic.Contrapose.contrapose₄
eq_false_intro
mul_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Real.rpow_def_of_pos
Real.exp_log
Real.exp_strictMono
lt_div_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
div_lt_div_right_of_neg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
add_sub_cancel_left
div_div
Real.log_one
sub_zero
StrictConcaveOn.secant_strict_mono
strictConcaveOn_log_Ioi
zero_lt_one'
add_lt_add_right
div_lt_div_iff_of_pos_right
mul_lt_of_lt_one_left
strictConcaveOn_log_Iio 📖mathematical—StrictConcaveOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Iio
Real.instPreorder
Real.instZero
Real.log
—convex_Iio
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Real.instIsStrictOrderedRing
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Contrapose.contrapose₄
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
Mathlib.Tactic.Ring.add_pf_add_gt
neg_eq_zero
Real.log_neg_eq_log
strictConcaveOn_log_Ioi
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
strictConcaveOn_log_Ioi 📖mathematical—StrictConcaveOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ioi
Real.instPreorder
Real.instZero
Real.log
—strictConcaveOn_of_slope_strict_anti_adjacent
Real.instIsStrictOrderedRing
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
LT.lt.trans
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Tactic.Contrapose.contrapose₃
div_eq_one_iff_eq
LT.lt.ne'
sub_self
Real.log_div
Real.log_lt_sub_one_of_pos
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
lt_div_iff₀
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.without_one_mul
CancelDenoms.sub_subst
CancelDenoms.neg_subst
strictConvexOn_exp 📖mathematical—StrictConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.univ
Real.exp
—strictConvexOn_of_slope_strict_mono_adjacent
Real.instIsStrictOrderedRing
convex_univ
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.IsNat.to_raw_eq
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.exp_add
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
Mathlib.Tactic.RingNF.add_neg
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.add_one_lt_exp
LT.lt.ne
Real.exp_pos
lt_div_iff₀
LT.lt.ne'
le_refl
strictConvexOn_rpow 📖mathematicalReal
Real.instLT
Real.instOne
StrictConvexOn
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Ici
Real.instPreorder
Real.instZero
Real.instPow
—strictConvexOn_of_slope_strict_mono_adjacent
Real.instIsStrictOrderedRing
convex_Ici
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
LE.le.trans_lt
Real.rpow_pos_of_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
div_lt_div_iff_of_pos_right
sub_div
div_self
LT.lt.ne'
Real.div_rpow
LT.lt.le
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_sub_cancel_right
add_comm
add_sub_assoc
div_mul_eq_mul_div
mul_div_assoc
Real.rpow_sub
sub_sub_cancel_left
Real.rpow_neg_one
mul_assoc
div_eq_inv_mul
sub_eq_add_neg
mul_neg
neg_div
neg_sub
one_add_mul_self_lt_rpow_one_add
le_sub_iff_add_le
neg_add_cancel
div_nonneg_iff
sub_ne_zero
LT.lt.ne
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_div_iff₀
lt_sub_iff_add_lt'
one_lt_div

---

← Back to Index