📁 Source: Mathlib/Analysis/Convex/SpecificFunctions/Deriv.lean
strictConvexOn_pow
prod_nonneg_of_card_nonpos_even
deriv2_sqrt_mul_log
deriv_sqrt_mul_log
deriv_sqrt_mul_log'
hasDerivAt_sqrt_mul_log
int_prod_range_nonneg
int_prod_range_pos
strictConcaveOn_cos_Icc
strictConcaveOn_sin_Icc
strictConcaveOn_sqrt_mul_log_Ioi
strictConvexOn_zpow
Even
StrictConvexOn
Real
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.univ
Monoid.toNatPow
Real.instMonoid
StrictMono.strictConvexOn_univ_of_deriv
continuous_pow
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
deriv_pow_field
StrictMono.const_mul
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Odd.strictMono_pow
AddGroup.existsAddOfLE
Nat.Even.sub_odd
Nat.odd_iff
Nat.cast_pos
Real.instIsOrderedRing
Real.instNontrivial
card
filter
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
prod
CommRing.toCommMonoid
prod_nonneg
IsStrictOrderedRing.toZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
neg_mul
one_mul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_of_not_ge
prod_mul_distrib
prod_ite
prod_const_one
mul_one
prod_const
neg_one_pow_eq_pow_mod_two
Nat.even_iff
pow_zero
Nat.iterate
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.sqrt
Real.log
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
le_or_gt
Real.sqrt_eq_zero_of_nonpos
zero_pow
three_ne_zero
MulZeroClass.mul_zero
div_zero
HasDerivWithinAt.deriv_eq_zero
HasDerivWithinAt.congr_of_mem
hasDerivWithinAt_const
uniqueDiffOn_Iic
Real.sqrt_ne_zero'
Real.mul_self_sqrt
LT.lt.le
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
neg_div
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Meta.NormNum.isNat_eq_false
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
mul_neg
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₂
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
HasDerivAt.deriv
HasDerivAt.div
HasDerivAt.const_add
Real.hasDerivAt_log
LT.lt.ne'
HasDerivAt.const_mul
Real.hasDerivAt_sqrt
mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
two_ne_zero
CharZero.NeZero.two
Real.instAdd
lt_or_ge
MulZeroClass.zero_mul
HasDerivAt
ContinuousMul.to_continuousSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
add_div
div_mul_cancel_left₀
div_eq_mul_inv
Real.sqrt_div_self'
add_comm
one_div
div_eq_inv_mul
HasDerivAt.mul
Finset.prod
Int.instCommMonoid
Finset.range
Finset.prod_congr
add_zero
Int.instZeroLEOneClass
two_mul
mul_add
Distrib.leftDistribClass
one_add_one_eq_two
add_assoc
Finset.prod_range_succ
mul_assoc
mul_nonneg
Int.instIsStrictOrderedRing
LE.le.trans
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
mul_nonneg_of_nonpos_of_nonpos
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
sub_nonpos_of_le
sub_nonneg_of_le
Set
Set.instMembership
Set.Ico
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
LE.le.lt_of_ne
Finset.prod_eq_zero_iff
Int.instNontrivial
Int.instNormMulClass
sub_eq_zero
Finset.mem_range
StrictConcaveOn
Set.Icc
Real.instPreorder
Real.pi
Real.cos
strictConcaveOn_of_deriv2_neg
convex_Icc
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
Real.continuousOn_cos
Function.iterate_one
Real.deriv_cos'
deriv.fun_neg'
Real.deriv_sin
Real.cos_pos_of_mem_Ioo
interior_Icc
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
instNoMinOrderOfNontrivial
instNoMaxOrderOfNontrivial
Real.instZero
Real.sin
Real.continuousOn_sin
Real.sin_pos_of_mem_Ioo
Set.Ioi
Real.instOne
strictConcaveOn_of_deriv2_neg'
convex_Ioi
Real.instIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
ContinuousOn.mul
Continuous.continuousOn
Real.continuous_sqrt
ContinuousOn.mono
Real.continuousOn_log
ne_of_gt
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
div_neg_of_neg_of_pos
neg_neg_of_pos
Real.log_pos
mul_pos
four_pos
pow_pos
Real.sqrt_pos
Set.Ici
StrictMonoOn.strictConvexOn_of_deriv
convex_Ici
continuousOn_pow
interior_Ici
mul_lt_mul_of_pos_left
pow_lt_pow_left₀
Nat.cast_pos'
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instIsStrictOrderedRing
Nat.instNontrivial
DivInvMonoid.toZPow
strictConvexOn_of_deriv2_pos'
continuousOn_zpow₀
IsTopologicalDivisionRing.toContinuousInv₀
instIsTopologicalDivisionRingReal
iter_deriv_zpow
Int.cast_natCast
Int.cast_zero
Int.instCharZero
Finset.coe_Ico
CharP.cast_eq_zero
CharP.ofCharZero
zero_add
zpow_pos
Set.mem_Ioi
---
← Back to Index