Documentation Verification Report

Star

πŸ“ Source: Mathlib/Analysis/Convex/Star.lean

Statistics

MetricCount
DefinitionsStarConvex
1
TheoremsstarConvex, add, add_left, add_right, add_smul_mem, add_smul_sub_mem, affine_image, affine_preimage, affinity, inter, is_linear_image, is_linear_preimage, linear_image, linear_preimage, mem, mem_smul, neg, openSegment_subset, ordConnected, preimage_add_left, preimage_add_right, preimage_smul, prod, segment_subset, smul, smul_mem, sub, sub', union, zero_smul, starConvex_compl_Ici, starConvex_compl_Iic, starConvex_empty, starConvex_iInter, starConvex_iInterβ‚‚, starConvex_iUnion, starConvex_iUnionβ‚‚, starConvex_iff_div, starConvex_iff_forall_ne_pos, starConvex_iff_forall_pos, starConvex_iff_openSegment_subset, starConvex_iff_ordConnected, starConvex_iff_pointwise_add_subset, starConvex_iff_segment_subset, starConvex_pi, starConvex_sInter, starConvex_sUnion, starConvex_singleton, starConvex_univ, starConvex_zero_iff
50
Total51

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
starConvex πŸ“–mathematicalSet
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
StarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”out
Set.mem_Icc
Convex.combo_self
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
smul_le_smul_of_nonneg_left
add_le_add_left
covariant_swap_add_of_covariant_add

StarConvex

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set
Set.add
β€”Set.add_image_prod
is_linear_image
prod
IsLinearMap.isLinearMap_add
add_left πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.image
β€”Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
mul_one
add_right πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.image
β€”Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_eval₃
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
mul_one
add_smul_mem πŸ“–β€”StarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”smul_add
add_assoc
add_smul
sub_add_cancel
one_smul
sub_nonneg_of_le
add_smul_sub_mem πŸ“–mathematicalStarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toSub
β€”segment_subset
segment_eq_image'
Set.mem_image_of_mem
affine_image πŸ“–mathematicalStarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
AffineMap
addGroupIsAddTorsor
AffineMap.instFunLike
Set.image
β€”Convex.combo_affine_apply
affine_preimage πŸ“–mathematicalStarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
AffineMap
addGroupIsAddTorsor
AffineMap.instFunLike
Set.preimageβ€”Set.mem_preimage
Convex.combo_affine_apply
affinity πŸ“–mathematicalStarConvex
CommSemiring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.image
β€”add_left
smul
Set.image_image
Set.image_smul
inter πŸ“–mathematicalStarConvexSet
Set.instInter
β€”β€”
is_linear_image πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsLinearMap
Set.imageβ€”linear_image
is_linear_preimage πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsLinearMap
Set.preimageβ€”linear_preimage
linear_image πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set.image
β€”LinearMap.map_add
LinearMap.map_smul
linear_preimage πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set.preimageβ€”Set.mem_preimage
LinearMap.map_add
LinearMap.map_smul
mem πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Nonempty
Set
Set.instMembership
β€”one_smul
zero_smul
add_zero
zero_le_one
le_rfl
mem_smul πŸ“–mathematicalStarConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set.smulSetβ€”Set.mem_smul_set_iff_inv_smul_memβ‚€
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
smul_mem
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_of_lt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivialOfCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
inv_le_one_of_one_leβ‚€
neg πŸ“–mathematicalStarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.neg
β€”Set.image_neg_eq_neg
is_linear_image
IsLinearMap.isLinearMap_neg
openSegment_subset πŸ“–mathematicalStarConvex
Set
Set.instMembership
Set.instHasSubset
openSegment
β€”HasSubset.Subset.trans
Set.instIsTransSubset
openSegment_subset_segment
segment_subset
ordConnected πŸ“–mathematicalSet
Set.instMembership
StarConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.OrdConnected
PartialOrder.toPreorder
β€”starConvex_iff_ordConnected
preimage_add_left πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.preimageβ€”add_comm
preimage_add_right
preimage_add_right πŸ“–mathematicalStarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.preimageβ€”one_smul
add_smul
add_add_add_comm
smul_add
preimage_smul πŸ“–mathematicalStarConvex
CommSemiring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.preimageβ€”linear_preimage
smulCommClass_self
prod πŸ“–mathematicalStarConvexProd.instAddCommMonoid
Prod.instSMul
SProd.sprod
Set
Set.instSProd
β€”β€”
segment_subset πŸ“–mathematicalStarConvex
Set
Set.instMembership
Set.instHasSubset
segment
β€”starConvex_iff_segment_subset
smul πŸ“–mathematicalStarConvex
CommSemiring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.smulSet
β€”linear_image
smulCommClass_self
smul_mem πŸ“–β€”StarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”β€”zero_add
add_smul_mem
sub πŸ“–mathematicalStarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SubNegMonoid.toSub
Set
Set.sub
β€”sub_eq_add_neg
add
neg
sub' πŸ“–mathematicalStarConvex
Prod.instAddCommMonoid
AddCommGroup.toAddCommMonoid
Prod.instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
SubNegMonoid.toSub
Set.image
β€”is_linear_image
IsLinearMap.isLinearMap_sub
union πŸ“–mathematicalStarConvexSet
Set.instUnion
β€”β€”
zero_smul πŸ“–mathematicalStarConvex
CommSemiring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.smulSet
β€”smul_zero
smul

(root)

Definitions

NameCategoryTheorems
StarConvex πŸ“–MathDef
21 mathmath: starConvex_iff_ordConnected, Complex.starConvex_ofReal_slitPlane, Complex.starConvex_one_slitPlane, starConvex_compl_Ici, starConvex_iff_pointwise_add_subset, starConvex_iff_forall_ne_pos, starConvex_iff_segment_subset, starConvex_iff_openSegment_subset, starConvex_zero_iff, Submodule.starConvex, starConvex_singleton, Balanced.starConvex, starConvex_iff_forall_pos, Complex.starConvex_slitPlane, Convex.starConvex_iff, Convex.starConvex, Set.OrdConnected.starConvex, starConvex_compl_Iic, starConvex_univ, starConvex_empty, starConvex_iff_div

Theorems

NameKindAssumesProvesValidatesDepends On
starConvex_compl_Ici πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
StarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Compl.compl
Set
Set.instCompl
Set.Ici
β€”starConvex_compl_Iic
OrderDual.isOrderedAddMonoid
AddCommGroup.add_comm
OrderDual.instIsStrictOrderedModule
OrderDual.instPosSMulReflectLT
starConvex_compl_Iic πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
StarConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Compl.compl
Set
Set.instCompl
Set.Iic
β€”starConvex_iff_forall_pos
LT.lt.not_ge
Set.mem_compl_iff
Set.mem_Iic
Mathlib.Tactic.Contrapose.contraposeβ‚„
LT.lt.le
lt_of_smul_lt_smul_of_nonneg_left
le_sub_iff_add_le'
IsOrderedAddMonoid.toAddLeftMono
one_smul
add_smul
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
smul_lt_smul_of_pos_left
IsStrictOrderedModule.toPosSMulStrictMono
starConvex_empty πŸ“–mathematicalβ€”StarConvex
Set
Set.instEmptyCollection
β€”β€”
starConvex_iInter πŸ“–mathematicalStarConvexSet.iInterβ€”starConvex_sInter
Set.sInter_range
Set.forall_mem_range
starConvex_iInterβ‚‚ πŸ“–mathematicalStarConvexSet.iInterβ€”starConvex_iInter
starConvex_iUnion πŸ“–mathematicalStarConvexSet.iUnionβ€”Set.mem_iUnion
starConvex_iUnionβ‚‚ πŸ“–mathematicalStarConvexSet.iUnionβ€”starConvex_iUnion
starConvex_iff_div πŸ“–mathematicalβ€”StarConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_div
div_self
LT.lt.ne'
div_one
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
starConvex_iff_forall_ne_pos πŸ“–mathematicalSet
Set.instMembership
StarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”LT.lt.le
LE.le.eq_or_lt
zero_add
zero_smul
one_smul
add_zero
eq_or_ne
Convex.combo_self
starConvex_iff_forall_pos πŸ“–mathematicalSet
Set.instMembership
StarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”LT.lt.le
LE.le.eq_or_lt
zero_add
one_smul
zero_smul
add_zero
starConvex_iff_openSegment_subset πŸ“–mathematicalSet
Set.instMembership
StarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.instHasSubset
openSegment
β€”starConvex_iff_segment_subset
openSegment_subset_iff_segment_subset
starConvex_iff_ordConnected πŸ“–mathematicalSet
Set.instMembership
StarConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.OrdConnected
PartialOrder.toPreorder
β€”Set.ordConnected_iff_uIcc_subset_left
segment_eq_uIcc
starConvex_iff_pointwise_add_subset πŸ“–mathematicalβ€”StarConvex
Set
Set.instHasSubset
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.smulSet
Set.instSingletonSet
β€”Set.add_mem_add
Set.smul_mem_smul_set
Set.mem_singleton
starConvex_iff_segment_subset πŸ“–mathematicalβ€”StarConvex
Set
Set.instHasSubset
segment
β€”β€”
starConvex_pi πŸ“–mathematicalStarConvexPi.addCommMonoid
Pi.instSMul
Set.pi
β€”β€”
starConvex_sInter πŸ“–mathematicalStarConvexSet.sInterβ€”β€”
starConvex_sUnion πŸ“–mathematicalStarConvexSet.sUnionβ€”Set.sUnion_eq_iUnion
starConvex_iUnion
starConvex_singleton πŸ“–mathematicalβ€”StarConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instSingletonSet
β€”Convex.combo_self
starConvex_univ πŸ“–mathematicalβ€”StarConvex
Set.univ
β€”β€”
starConvex_zero_iff πŸ“–mathematicalβ€”StarConvex
Ring.toSemiring
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
SMulWithZero.toSMulZeroClass
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Set
Set.instMembership
β€”sub_add_cancel
smul_zero
zero_add
sub_nonneg_of_le
le_add_of_nonneg_left

---

← Back to Index