Documentation Verification Report

StdSimplex

πŸ“ Source: Mathlib/Analysis/Convex/StdSimplex.lean

Statistics

MetricCount
DefinitionsStdSimplex, stdSimplex, barycenter, instFunLikeElemForall, instUniqueElemForall, map, vertex, stdSimplexEquivIcc, stdSimplexHomeomorphUnitInterval
9
TheoremsconvexHull_eq_image, bounded_stdSimplex, convexHull_basis_eq_stdSimplex, convexHull_rangle_single_eq_stdSimplex, convex_stdSimplex, diam_stdSimplex, diam_stdSimplex_le, diam_stdSimplex_of_subsingleton, instPathConnectedSpaceElemForallRealStdSimplexOfNonempty, isClosed_stdSimplex, isCompact_stdSimplex, isPathConnected_stdSimplex, ite_eq_mem_stdSimplex, mem_Icc_of_mem_stdSimplex, segment_single_subset_stdSimplex, single_mem_stdSimplex, add_eq_one, barycenter_apply, barycenter_eq_centerMass, continuous_map, eq_one_of_unique, ext, ext_iff, image_linearMap, instCompactSpace_coe, instNonemptyElemForall, instNontrivialElemForall, instSubsingletonElemForall, le_one, map_coe, map_comp_apply, map_id_apply, map_vertex, sum_eq_one, vertex_coe, vertex_injective, zero_le, stdSimplexEquivIcc_apply_coe, stdSimplexEquivIcc_one, stdSimplexEquivIcc_symm_apply_coe, stdSimplexEquivIcc_zero, stdSimplexHomeomorphUnitInterval_apply_coe, stdSimplexHomeomorphUnitInterval_one, stdSimplexHomeomorphUnitInterval_symm_apply_coe, stdSimplexHomeomorphUnitInterval_zero, stdSimplex_eq_inter, stdSimplex_fin_two, stdSimplex_of_isEmpty_index, stdSimplex_of_subsingleton, stdSimplex_subset_closedBall, stdSimplex_unique
51
Total60

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
convexHull_eq_image πŸ“–mathematicalβ€”DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
Set.image
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
Set.Elem
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
Finset.sum
LinearMap.addCommMonoid
Finset.univ
fintype
LinearMap.smulRight
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.proj
Set.instMembership
stdSimplex
β€”IsScalarTower.left
convexHull_basis_eq_stdSimplex
LinearMap.image_convexHull
Set.range_comp
LinearMap.coe_sum
Finset.sum_congr
Set.ext
Finset.sum_apply
ite_smul
one_smul
zero_smul
Finset.sum_ite_eq

(root)

Definitions

NameCategoryTheorems
StdSimplex πŸ“–CompData
1 mathmath: ConvexSpace.assoc
stdSimplex πŸ“–CompOp
54 mathmath: isCompact_stdSimplex, stdSimplex_of_isEmpty_index, stdSimplexHomeomorphUnitInterval_symm_apply_coe, SimplexCategory.toTopObj_one_coe_add_coe_eq_one, stdSimplex_fin_two, stdSimplexHomeomorphUnitInterval_zero, stdSimplex_subset_closedBall, segment_single_subset_stdSimplex, SimplexCategory.continuous_toTopMap, instPathConnectedSpaceElemForallRealStdSimplexOfNonempty, diam_stdSimplex, single_mem_stdSimplex, stdSimplex.eq_one_of_unique, SimplexCategory.toTop_obj, convexHull_basis_eq_stdSimplex, SimplexCategory.toTop_map, stdSimplex.map_coe, ite_eq_mem_stdSimplex, SimplexCategory.toTopβ‚€_map, isClosed_stdSimplex, SimplexCategory.toTopβ‚€_obj, SimplexCategory.toTopObj_one_add_eq_one, diam_stdSimplex_of_subsingleton, stdSimplex.continuous_map, stdSimplex.vertex_coe, stdSimplex_of_subsingleton, diam_stdSimplex_le, bounded_stdSimplex, stdSimplex.ext_iff, stdSimplexHomeomorphUnitInterval_apply_coe, stdSimplex.instSubsingletonElemForall, stdSimplex.sum_eq_one, isPathConnected_stdSimplex, stdSimplex.instNonemptyElemForall, stdSimplex.barycenter_apply, stdSimplex.zero_le, convex_stdSimplex, stdSimplex.vertex_injective, stdSimplexHomeomorphUnitInterval_one, stdSimplex.add_eq_one, stdSimplex.image_linearMap, stdSimplex.barycenter_eq_centerMass, stdSimplexEquivIcc_apply_coe, Set.Finite.convexHull_eq_image, convexHull_rangle_single_eq_stdSimplex, stdSimplexEquivIcc_symm_apply_coe, stdSimplex.le_one, stdSimplex.instNontrivialElemForall, stdSimplexEquivIcc_one, stdSimplex.instCompactSpace_coe, stdSimplex_eq_inter, stdSimplex_unique, SimplexCategory.toTopObj_zero_apply_zero, stdSimplexEquivIcc_zero
stdSimplexEquivIcc πŸ“–CompOp
4 mathmath: stdSimplexEquivIcc_apply_coe, stdSimplexEquivIcc_symm_apply_coe, stdSimplexEquivIcc_one, stdSimplexEquivIcc_zero
stdSimplexHomeomorphUnitInterval πŸ“–CompOp
4 mathmath: stdSimplexHomeomorphUnitInterval_symm_apply_coe, stdSimplexHomeomorphUnitInterval_zero, stdSimplexHomeomorphUnitInterval_apply_coe, stdSimplexHomeomorphUnitInterval_one

Theorems

NameKindAssumesProvesValidatesDepends On
bounded_stdSimplex πŸ“–mathematicalβ€”Bornology.IsBounded
Pi.instBornology
Real
PseudoMetricSpace.toBornology
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
β€”Metric.isBounded_iff_subset_closedBall
stdSimplex_subset_closedBall
convexHull_basis_eq_stdSimplex πŸ“–mathematicalβ€”DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pi.Function.module
Semiring.toModule
Set.range
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
stdSimplex
β€”Set.Subset.antisymm
convexHull_min
ite_eq_mem_stdSimplex
IsStrictOrderedRing.toZeroLEOneClass
convex_stdSimplex
IsStrictOrderedRing.toIsOrderedRing
pi_eq_sum_univ
Finset.centerMass_eq_of_sum_1
Finset.centerMass_mem_convexHull
zero_lt_one
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Set.mem_range_self
convexHull_rangle_single_eq_stdSimplex πŸ“–mathematicalβ€”DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Pi.Function.module
Semiring.toModule
Set.range
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
stdSimplex
β€”Pi.single_eq_of_ne'
Pi.single_eq_same
convexHull_basis_eq_stdSimplex
convex_stdSimplex πŸ“–mathematicalβ€”Convex
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
stdSimplex
β€”add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
Finset.sum_congr
Finset.sum_add_distrib
Finset.smul_sum
smul_eq_mul
mul_one
diam_stdSimplex πŸ“–mathematicalβ€”Metric.diam
pseudoMetricSpacePi
Real
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
Real.instOne
β€”le_antisymm
diam_stdSimplex_le
exists_pair_ne
dist_single_single
sub_zero
abs_one
Real.instIsOrderedRing
max_self
Metric.dist_le_diam_of_mem
bounded_stdSimplex
single_mem_stdSimplex
Real.instZeroLEOneClass
diam_stdSimplex_le πŸ“–mathematicalβ€”Real
Real.instLE
Metric.diam
pseudoMetricSpacePi
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
Real.instOne
β€”Metric.diam_le_of_forall_dist_le
zero_le_one
Real.instZeroLEOneClass
dist_pi_le_iff
mem_Icc_of_mem_stdSimplex
Real.instIsOrderedAddMonoid
diam_stdSimplex_of_subsingleton πŸ“–mathematicalβ€”Metric.diam
pseudoMetricSpacePi
Real
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
Real.instZero
β€”isEmpty_or_nonempty
stdSimplex_of_isEmpty_index
Real.instNontrivial
Metric.diam_empty
stdSimplex_unique
Real.instZeroLEOneClass
Metric.diam_singleton
instPathConnectedSpaceElemForallRealStdSimplexOfNonempty πŸ“–mathematicalβ€”PathConnectedSpace
Set.Elem
stdSimplex
Real
Real.semiring
Real.partialOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”isPathConnected_iff_pathConnectedSpace
isPathConnected_stdSimplex
isClosed_stdSimplex πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
β€”IsClosed.inter
isClosed_iInter
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_const
continuous_apply
isClosed_eq
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
continuous_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
stdSimplex_eq_inter
isCompact_stdSimplex πŸ“–mathematicalβ€”IsCompact
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
β€”Metric.isCompact_iff_isClosed_bounded
Pi.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
pi_properSpace
instProperSpaceReal
isClosed_stdSimplex
bounded_stdSimplex
isPathConnected_stdSimplex πŸ“–mathematicalβ€”IsPathConnected
Pi.topologicalSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
stdSimplex
Real.semiring
Real.partialOrder
β€”Convex.isPathConnected
instContinuousAddForallOfIsTopologicalSemiring
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
instContinuousSMulForall
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
convex_stdSimplex
Real.instIsOrderedRing
single_mem_stdSimplex
Real.instZeroLEOneClass
ite_eq_mem_stdSimplex πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
β€”single_mem_stdSimplex
mem_Icc_of_mem_stdSimplex πŸ“–mathematicalSet
Set.instMembership
stdSimplex
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
Finset.mem_univ
segment_single_subset_stdSimplex πŸ“–mathematicalβ€”Set
Set.instHasSubset
segment
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
stdSimplex
β€”Convex.segment_subset
convex_stdSimplex
single_mem_stdSimplex
single_mem_stdSimplex πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”le_update_iff
zero_le_one
le_rfl
Finset.sum_pi_single'
stdSimplexEquivIcc_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DFunLike.coe
Equiv
Set.Elem
stdSimplex
Ring.toSemiring
Fin.fintype
EquivLike.toFunLike
Equiv.instEquivLike
stdSimplexEquivIcc
β€”β€”
stdSimplexEquivIcc_one πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
stdSimplex
Ring.toSemiring
Fin.fintype
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
EquivLike.toFunLike
Equiv.instEquivLike
stdSimplexEquivIcc
Set
Set.instMembership
Pi.single
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
single_mem_stdSimplex
IsOrderedRing.toZeroLEOneClass
Set.Icc.instOne
β€”single_mem_stdSimplex
IsOrderedRing.toZeroLEOneClass
stdSimplexEquivIcc_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
Ring.toSemiring
Fin.fintype
DFunLike.coe
Equiv
Set.Elem
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
stdSimplexEquivIcc
Matrix.vecCons
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Matrix.vecEmpty
β€”β€”
stdSimplexEquivIcc_zero πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
stdSimplex
Ring.toSemiring
Fin.fintype
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
EquivLike.toFunLike
Equiv.instEquivLike
stdSimplexEquivIcc
Set
Set.instMembership
Pi.single
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
single_mem_stdSimplex
IsOrderedRing.toZeroLEOneClass
Set.Icc.instZero
β€”single_mem_stdSimplex
IsOrderedRing.toZeroLEOneClass
stdSimplexHomeomorphUnitInterval_apply_coe πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
Real.partialOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Real.instRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DFunLike.coe
Homeomorph
Set.Elem
stdSimplex
Real.semiring
Fin.fintype
unitInterval
instTopologicalSpaceSubtype
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
stdSimplexHomeomorphUnitInterval
Ring.toSemiring
β€”β€”
stdSimplexHomeomorphUnitInterval_one πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Set.Elem
stdSimplex
Real
Real.semiring
Real.partialOrder
Fin.fintype
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
stdSimplexHomeomorphUnitInterval
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
single_mem_stdSimplex
Real.instZeroLEOneClass
Set.Icc.instOne
Real.instIsOrderedRing
β€”single_mem_stdSimplex
Real.instZeroLEOneClass
stdSimplexHomeomorphUnitInterval_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
Real
Ring.toSemiring
Real.instRing
Real.partialOrder
Fin.fintype
DFunLike.coe
Homeomorph
Set.Elem
unitInterval
Real.semiring
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
stdSimplexHomeomorphUnitInterval
Matrix.vecCons
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Set.Icc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Matrix.vecEmpty
β€”β€”
stdSimplexHomeomorphUnitInterval_zero πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Set.Elem
stdSimplex
Real
Real.semiring
Real.partialOrder
Fin.fintype
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
stdSimplexHomeomorphUnitInterval
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
single_mem_stdSimplex
Real.instZeroLEOneClass
Set.Icc.instZero
Real.instIsOrderedRing
β€”single_mem_stdSimplex
Real.instZeroLEOneClass
stdSimplex_eq_inter πŸ“–mathematicalβ€”stdSimplex
Set
Set.instInter
Set.iInter
setOf
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Set.ext
stdSimplex_fin_two πŸ“–mathematicalβ€”stdSimplex
Fin.fintype
segment
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddMonoidWithOne.toOne
β€”Set.Subset.antisymm
Fin.sum_univ_two
Pi.single_eq_same
mul_one
Pi.single_eq_of_ne
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
add_zero
zero_add
segment_single_subset_stdSimplex
stdSimplex_of_isEmpty_index πŸ“–mathematicalβ€”stdSimplex
Set
Set.instEmptyCollection
β€”Set.eq_empty_of_forall_notMem
Finset.sum_congr
Finset.univ_eq_empty
NeZero.one
stdSimplex_of_subsingleton πŸ“–mathematicalβ€”stdSimplex
Set.univ
β€”Set.eq_univ_of_forall
Eq.le
stdSimplex_subset_closedBall πŸ“–mathematicalβ€”Set
Set.instHasSubset
stdSimplex
Real
Real.semiring
Real.partialOrder
Metric.closedBall
pseudoMetricSpacePi
Real.pseudoMetricSpace
Pi.instZero
Real.instZero
Real.instOne
β€”Metric.mem_closedBall
dist_pi_le_iff
zero_le_one
Real.instZeroLEOneClass
Pi.zero_apply
Real.dist_0_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mem_Icc_of_mem_stdSimplex
stdSimplex_unique πŸ“–mathematicalβ€”stdSimplex
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”nonempty_unique
Set.eq_singleton_iff_unique_mem
zero_le_one
Fintype.sum_unique
Unique.forall_iff

stdSimplex

Definitions

NameCategoryTheorems
barycenter πŸ“–CompOp
2 mathmath: barycenter_apply, barycenter_eq_centerMass
instFunLikeElemForall πŸ“–CompOp
11 mathmath: SimplexCategory.toTopObj_one_coe_add_coe_eq_one, eq_one_of_unique, map_coe, SimplexCategory.toTopObj_one_add_eq_one, vertex_coe, ext_iff, sum_eq_one, zero_le, add_eq_one, le_one, SimplexCategory.toTopObj_zero_apply_zero
instUniqueElemForall πŸ“–CompOpβ€”
map πŸ“–CompOp
8 mathmath: SimplexCategory.continuous_toTopMap, SimplexCategory.toTop_map, map_coe, SimplexCategory.toTopβ‚€_map, continuous_map, map_id_apply, map_comp_apply, map_vertex
vertex πŸ“–CompOp
3 mathmath: vertex_coe, vertex_injective, map_vertex

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq_one πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Set.Elem
stdSimplex
Fin.fintype
instFunLikeElemForall
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Fin.sum_univ_two
sum_eq_one
barycenter_apply πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
barycenter
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Fintype.card
β€”β€”
barycenter_eq_centerMass πŸ“–mathematicalβ€”Set
Set.instMembership
stdSimplex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
barycenter
Finset.centerMass
Pi.addCommGroup
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
Semiring.toModule
Finset.univ
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”Finset.sum_congr
Finset.sum_const
nsmul_eq_mul
mul_one
one_smul
Finset.sum_apply
Pi.single_apply
Finset.sum_ite_eq
continuous_map πŸ“–mathematicalβ€”Continuous
Set.Elem
stdSimplex
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
map
β€”Finite.of_fintype
Continuous.comp
FunOnFinite.continuous_linearMap
IsTopologicalSemiring.toContinuousAdd
continuous_induced_dom
eq_one_of_unique πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”instSubsingletonElemForall
Unique.instSubsingleton
ext πŸ“–β€”DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
β€”ext
image_linearMap πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.image
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
FunOnFinite.linearMap
Finite.of_fintype
stdSimplex
β€”Finite.of_fintype
FunOnFinite.linearMap_apply_apply
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Finset.sum_congr
Finset.sum_fiberwise
instCompactSpace_coe πŸ“–mathematicalβ€”CompactSpace
Set.Elem
stdSimplex
Real
Real.semiring
Real.partialOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”isCompact_iff_compactSpace
isCompact_stdSimplex
instNonemptyElemForall πŸ“–mathematicalβ€”Set.Elem
stdSimplex
β€”β€”
instNontrivialElemForall πŸ“–mathematicalβ€”Nontrivial
Set.Elem
stdSimplex
β€”exists_pair_ne
vertex_injective
instSubsingletonElemForall πŸ“–mathematicalβ€”Set.Elem
stdSimplex
β€”ext
sum_eq_one
Finset.sum_eq_single
instIsEmptyFalse
le_one πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
β€”sum_eq_one
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
map_coe πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
map
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.instFunLike
FunOnFinite.linearMap
Finite.of_fintype
β€”β€”
map_comp_apply πŸ“–mathematicalβ€”mapβ€”ext
Finite.of_fintype
RingHomCompTriple.ids
FunOnFinite.linearMap_comp
map_id_apply πŸ“–mathematicalβ€”mapβ€”ext
Finite.of_fintype
FunOnFinite.linearMap_id
map_vertex πŸ“–mathematicalβ€”map
vertex
β€”ext
Finite.of_fintype
FunOnFinite.linearMap_piSingle
sum_eq_one πŸ“–mathematicalβ€”Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finset.univ
DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
vertex_coe πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
vertex
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”β€”
vertex_injective πŸ“–mathematicalβ€”Set.Elem
stdSimplex
vertex
β€”DFunLike.congr_fun
Pi.single_eq_same
Pi.single_eq_of_ne
NeZero.one
zero_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DFunLike.coe
Set.Elem
stdSimplex
instFunLikeElemForall
β€”β€”

---

← Back to Index