Documentation Verification Report

Strict

πŸ“ Source: Mathlib/Analysis/Convex/Strict.lean

Statistics

MetricCount
DefinitionsStrictConvex
1
TheoremsstrictConvex_of_isOpen, strictConvex_iUnion, strictConvex_sUnion, strictConvex_iff, strictConvex, strictConvex, add, add_left, add_right, add_smul_mem, add_smul_sub_mem, affine_image, affine_preimage, affinity, convex, eq, eq_of_openSegment_subset_frontier, inter, is_linear_image, is_linear_preimage, linear_image, linear_preimage, mem_smul_of_zero_mem, neg, openSegment_subset, ordConnected, preimage_add_left, preimage_add_right, preimage_smul, smul, smul_mem_of_zero_mem, sub, vadd, strictConvex_Icc, strictConvex_Ici, strictConvex_Ico, strictConvex_Iic, strictConvex_Iio, strictConvex_Ioc, strictConvex_Ioi, strictConvex_Ioo, strictConvex_empty, strictConvex_iff_convex, strictConvex_iff_div, strictConvex_iff_openSegment_subset, strictConvex_iff_ordConnected, strictConvex_singleton, strictConvex_uIcc, strictConvex_uIoc, strictConvex_univ
50
Total51

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex_of_isOpen πŸ“–mathematicalIsOpen
Convex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
StrictConvexβ€”LT.lt.le
IsOpen.interior_eq

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex_iUnion πŸ“–mathematicalDirected
Set
Set.instHasSubset
StrictConvex
Set.iUnionβ€”Set.mem_iUnion
interior_mono
Set.subset_iUnion

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex_sUnion πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
StrictConvex
Set.sUnionβ€”Set.sUnion_eq_iUnion
Directed.strictConvex_iUnion
directedOn_iff_directed

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex_iff πŸ“–mathematicalIsOpenStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Convex
β€”StrictConvex.convex
Convex.strictConvex_of_isOpen

Set.OrdConnected

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”strictConvex_iff_openSegment_subset
Ne.lt_or_gt
HasSubset.Subset.trans
Set.instIsTransSubset
openSegment_subset_Ioo
IsOpen.subset_interior_iff
isOpen_Ioo
OrderTopology.to_orderClosedTopology
Set.Ioo_subset_Icc_self
out
openSegment_symm

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex πŸ“–mathematicalSet.SubsingletonStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”pairwise

StrictConvex

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”smul_add
add_add_add_comm
eq_or_ne
interior_mono
Set.add_subset_add
Set.singleton_subset_iff
Set.Subset.rfl
Convex.combo_self
Set.singleton_add
IsOpenMap.image_interior_subset
isOpenMap_add_left
Set.mem_image_of_mem
subset_interior_add_left
ContinuousConstVAdd.op
VAddCommClass.continuousConstVAdd
vaddCommClass_self
AddCommSemigroup.isCentralVAdd
Set.add_mem_add
convex
LT.lt.le
add_left πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.image
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Set.singleton_add
add
strictConvex_singleton
add_right πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.image
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”Set.image_congr
add_comm
add_left
add_smul_mem πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
interiorβ€”Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
Mathlib.Tactic.Module.NF.add_eq_eval₁
zero_add
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
mul_one
sub_add_cancel
add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_zero
sub_pos_of_lt
add_smul_sub_mem πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
interior
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toSub
β€”openSegment_subset
openSegment_eq_image'
Set.mem_image_of_mem
affine_image πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsOpenMap
DFunLike.coe
AffineMap
addGroupIsAddTorsor
AffineMap.instFunLike
Set.imageβ€”IsOpenMap.image_interior_subset
Convex.combo_affine_apply
affine_preimage πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Continuous
DFunLike.coe
AffineMap
addGroupIsAddTorsor
AffineMap.instFunLike
Set.preimageβ€”preimage_interior_subset_interior_preimage
Set.mem_preimage
Convex.combo_affine_apply
affinity πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
addGroupIsAddTorsor
Set.smulSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”vadd
smul
convex πŸ“–mathematicalStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Convexβ€”convex_iff_pairwise_pos
interior_subset
eq πŸ“–β€”StrictConvex
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
interior
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”β€”Set.Pairwise.eq
eq_of_openSegment_subset_frontier πŸ“–β€”StrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
Set.instHasSubset
openSegment
frontier
β€”β€”DenselyOrdered.dense
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.one
sub_pos_of_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_sub_cancel
inter πŸ“–mathematicalStrictConvexSet
Set.instInter
β€”interior_inter
is_linear_image πŸ“–mathematicalStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsLinearMap
IsOpenMap
Set.imageβ€”linear_image
LinearMap.IsScalarTower.compatibleSMul
IsScalarTower.left
is_linear_preimage πŸ“–mathematicalStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsLinearMap
Continuous
Set.preimageβ€”linear_preimage
linear_image πŸ“–mathematicalStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsOpenMap
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set.imageβ€”IsOpenMap.image_interior_subset
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
LinearMap.map_smul_of_tower
linear_preimage πŸ“–mathematicalStrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Continuous
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Set.preimageβ€”preimage_interior_subset_interior_preimage
Set.mem_preimage
LinearMap.map_add
LinearMap.map_smul
mem_smul_of_zero_mem πŸ“–mathematicalStrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set.smulSet
interior
β€”Set.mem_smul_set_iff_inv_smul_memβ‚€
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
smul_mem_of_zero_mem
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
inv_lt_one_of_one_ltβ‚€
IsStrictOrderedRing.toZeroLEOneClass
neg πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”is_linear_preimage
IsLinearMap.isLinearMap_neg
Continuous.neg
IsTopologicalAddGroup.toContinuousNeg
continuous_id
neg_injective
openSegment_subset πŸ“–mathematicalStrictConvex
Set
Set.instMembership
Set.instHasSubset
openSegment
interior
β€”strictConvex_iff_openSegment_subset
ordConnected πŸ“–mathematicalStrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.OrdConnected
PartialOrder.toPreorder
β€”strictConvex_iff_ordConnected
preimage_add_left πŸ“–mathematicalStrictConvex
AddCancelCommMonoid.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.preimage
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”add_comm
preimage_add_right
preimage_add_right πŸ“–mathematicalStrictConvex
AddCancelCommMonoid.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.preimage
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”preimage_interior_subset_interior_preimage
continuous_add_left
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_smul
add_smul
add_add_add_comm
smul_add
preimage_smul πŸ“–mathematicalStrictConvex
CommSemiring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.preimageβ€”eq_or_ne
zero_smul
Set.preimage_const
strictConvex_univ
strictConvex_empty
linear_preimage
smulCommClass_self
ContinuousConstSMul.continuous_const_smul
smul_right_injective
IsDomain.toIsCancelMulZero
smul πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.smulSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”eq_or_ne
Set.Subsingleton.strictConvex
Set.subsingleton_zero_smul_set
linear_image
smulCommClass_self
isOpenMap_smulβ‚€
smul_mem_of_zero_mem πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
interiorβ€”zero_add
add_smul_mem
sub πŸ“–mathematicalStrictConvex
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.sub
SubNegMonoid.toSub
β€”add
IsTopologicalAddGroup.toContinuousAdd
neg
sub_eq_add_neg
vadd πŸ“–mathematicalStrictConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
HVAdd.hVAdd
Set
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
addGroupIsAddTorsor
β€”add_left

(root)

Definitions

NameCategoryTheorems
StrictConvex πŸ“–MathDef
30 mathmath: LinearIsometryEquiv.strictConvex_preimage, strictConvex_Iic, strictConvex_Icc, strictConvex_uIcc, strictConvex_closedBall, Convex.strictConvex, strictConvex_Ioo, strictConvex_iff_openSegment_subset, strictConvexSpace_iff, strictConvex_Iio, strictConvex_empty, strictConvex_iff_convex, Set.Subsingleton.strictConvex, strictConvex_Ici, StrictConvexSpace.strictConvex_closedBall, ContinuousLinearEquiv.strictConvex_image, LinearIsometryEquiv.strictConvex_image, Convex.strictConvex', strictConvex_Ioc, strictConvex_Ico, IsOpen.strictConvex_iff, strictConvex_iff_ordConnected, strictConvex_singleton, strictConvex_iff_div, Set.OrdConnected.strictConvex, Convex.strictConvex_of_isOpen, ContinuousLinearEquiv.strictConvex_preimage, strictConvex_uIoc, strictConvex_Ioi, strictConvex_univ

Theorems

NameKindAssumesProvesValidatesDepends On
strictConvex_Icc πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Icc
strictConvex_Ici πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Ici
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Ici
strictConvex_Ico πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Ico
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Ico
strictConvex_Iic πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Iic
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Iic
strictConvex_Iio πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Iio
strictConvex_Ioc πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Ioc
strictConvex_Ioi πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Ioi
strictConvex_Ioo πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”Set.OrdConnected.strictConvex
Set.ordConnected_Ioo
strictConvex_empty πŸ“–mathematicalβ€”StrictConvex
Set
Set.instEmptyCollection
β€”Set.pairwise_empty
strictConvex_iff_convex πŸ“–mathematicalβ€”StrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Convex
β€”StrictConvex.convex
Set.OrdConnected.strictConvex
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
IsStrictOrderedModule.toPosSMulStrictMono
IsStrictOrderedRing.toIsStrictOrderedModule
Convex.ordConnected
strictConvex_iff_div πŸ“–mathematicalβ€”StrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Pairwise
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_pos'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
strictConvex_iff_openSegment_subset πŸ“–mathematicalβ€”StrictConvex
Set.Pairwise
Set
Set.instHasSubset
openSegment
interior
β€”openSegment_subset_iff
strictConvex_iff_ordConnected πŸ“–mathematicalβ€”StrictConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.OrdConnected
PartialOrder.toPreorder
β€”strictConvex_iff_convex
convex_iff_ordConnected
strictConvex_singleton πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instSingletonSet
β€”Set.pairwise_singleton
strictConvex_uIcc πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.uIcc
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”strictConvex_Icc
strictConvex_uIoc πŸ“–mathematicalβ€”StrictConvex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.uIoc
β€”strictConvex_Ioc
strictConvex_univ πŸ“–mathematicalβ€”StrictConvex
Set.univ
β€”interior_univ
Set.mem_univ

---

← Back to Index