Documentation Verification Report

Topology

πŸ“ Source: Mathlib/Analysis/Convex/Topology.lean

Statistics

MetricCount
DefinitionsclosedConvexHull
1
TheoremsIoo_subset_of_mem_closure, add_smul_mem_interior, add_smul_mem_interior', add_smul_sub_mem_interior, add_smul_sub_mem_interior', closure, closure_interior_eq_closure_of_nonempty_interior, closure_subset_image_homothety_interior_of_one_lt, closure_subset_interior_image_homothety_of_one_lt, combo_closure_interior_mem_interior, combo_closure_interior_subset_interior, combo_interior_closure_mem_interior, combo_interior_closure_subset_interior, combo_interior_self_mem_interior, combo_interior_self_subset_interior, combo_self_interior_mem_interior, combo_self_interior_subset_interior, diff_singleton_eventually_mem_nhds, interior, interior_closure_eq_interior_of_nonempty_interior, nhdsWithin_diff_eq_nhdsGT, nhdsWithin_diff_eq_nhdsLT, nhdsWithin_diff_eq_nhdsNE, nhdsWithin_inter_Iio_eq_nhdsLT, nhdsWithin_inter_Ioi_eq_nhdsGT, nontrivial_iff_nonempty_interior, openSegment_closure_interior_subset_interior, openSegment_interior_closure_subset_interior, openSegment_interior_self_subset_interior, openSegment_self_interior_subset_interior, strictConvex, strictConvex', subset_interior_image_homothety_of_one_lt, convex, ball_eq_openSegment, closedBall_eq_segment, convex_iff_isPreconnected, isClosed_convexHull, isCompact_convexHull, closedConvexHull_closure_eq_closedConvexHull, closedConvexHull_eq_closure_convexHull, closedConvexHull_isClosed, closedConvexHull_min, closure_openSegment, closure_subset_closedConvexHull, convexHull_subset_closedConvexHull, convex_closedConvexHull, convex_closed_sInter, isClosed_closedConvexHull, segment_subset_closure_openSegment, subset_closedConvexHull
51
Total52

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
Ioo_subset_of_mem_closure πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.instHasSubset
Set.Ioo
PartialOrder.toPreorder
β€”subsingleton_or_nontrivial
Set.Subsingleton.closure
T5Space.toT1Space
OrderTopology.t5Space
Set.Ioo_eq_empty
interior_Ioo
OrderTopology.to_orderClosedTopology
interior_mono
Ioo_subset_openSegment
openSegment_subset
closure
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
interior_closure_eq_interior_of_nonempty_interior
ContinuousMul.to_continuousSMul
nontrivial_iff_nonempty_interior
interior_subset
add_smul_mem_interior πŸ“–β€”Convex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.Ioc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”β€”add_smul_mem_interior'
subset_closure
add_smul_mem_interior' πŸ“–β€”Convex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
closure
interior
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.Ioc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”β€”add_sub_cancel_left
add_smul_sub_mem_interior'
add_smul_sub_mem_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
Set.Ioc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toSub
β€”add_smul_sub_mem_interior'
subset_closure
add_smul_sub_mem_interior' πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
closure
interior
Set.Ioc
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SubNegMonoid.toSub
β€”smul_sub
add_sub
sub_smul
one_smul
add_comm
combo_interior_closure_mem_interior
sub_nonneg
add_sub_cancel
closure πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
closureβ€”Continuous.add
IsTopologicalAddGroup.toContinuousAdd
Continuous.const_smul
continuous_fst
continuous_snd
map_mem_closureβ‚‚
closure_interior_eq_closure_of_nonempty_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Nonempty
interior
closureβ€”subset_antisymm
Set.instAntisymmSubset
closure_mono
interior_subset
openSegment_interior_closure_subset_interior
ContinuousSMul.continuousConstSMul
segment_subset_closure_openSegment
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
IsTopologicalAddGroup.toContinuousAdd
right_mem_segment
IsStrictOrderedRing.toZeroLEOneClass
closure_subset_image_homothety_interior_of_one_lt πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Set
Set.instMembership
interior
Real.instLT
Real.instOne
Set.instHasSubset
closure
Set.image
DFunLike.coe
AffineMap
CommRing.toRing
Real.commRing
addGroupIsAddTorsor
AffineMap.instFunLike
AffineMap.homothety
β€”LT.lt.ne'
LT.lt.trans
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
openSegment_interior_closure_subset_interior
ContinuousSMul.continuousConstSMul
openSegment_eq_image_lineMap
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
inv_one
Set.inv_Ioiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
zero_lt_one'
Set.image_inv_eq_inv
Set.image_image
AffineMap.homothety_eq_lineMap
Set.mem_image_of_mem
AffineEquiv.apply_symm_apply
closure_subset_interior_image_homothety_of_one_lt πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Set
Set.instMembership
interior
Real.instLT
Real.instOne
Set.instHasSubset
closure
Set.image
DFunLike.coe
AffineMap
CommRing.toRing
Real.commRing
addGroupIsAddTorsor
AffineMap.instFunLike
AffineMap.homothety
β€”HasSubset.Subset.trans
Set.instIsTransSubset
closure_subset_image_homothety_interior_of_one_lt
IsOpenMap.image_interior_subset
AffineMap.homothety_isOpenMap
instIsTopologicalAddTorsor
ContinuousSMul.continuousConstSMul
LT.lt.ne'
LT.lt.trans
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
combo_closure_interior_mem_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
closure
interior
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”combo_closure_interior_subset_interior
Set.add_mem_add
Set.smul_mem_smul_set
combo_closure_interior_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instHasSubset
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.smulSet
closure
interior
β€”add_comm
combo_interior_closure_subset_interior
combo_interior_closure_mem_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
closure
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”combo_interior_closure_subset_interior
Set.add_mem_add
Set.smul_mem_smul_set
combo_interior_closure_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instHasSubset
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.smulSet
interior
closure
β€”Set.add_subset_add
Set.Subset.rfl
smul_closure_subset
IsOpen.add_closure
isOpen_interior
subset_interior_add_left
ContinuousConstVAdd.op
VAddCommClass.continuousConstVAdd
vaddCommClass_self
IsTopologicalAddGroup.toContinuousAdd
AddCommSemigroup.isCentralVAdd
interior_mono
set_combo_subset
LT.lt.le
interior_smulβ‚€
LT.lt.ne'
combo_interior_self_mem_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”combo_interior_closure_mem_interior
subset_closure
combo_interior_self_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLT
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLE
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instHasSubset
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.smulSet
interior
β€”Set.add_subset_add
Set.Subset.rfl
Set.image_mono
subset_closure
combo_interior_closure_subset_interior
combo_self_interior_mem_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
β€”combo_closure_interior_mem_interior
subset_closure
combo_self_interior_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Preorder.toLE
PartialOrder.toPreorder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instHasSubset
Set.add
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Set.smulSet
interior
β€”add_comm
combo_interior_self_subset_interior
diff_singleton_eventually_mem_nhds πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Filter.Eventually
Set
Filter
Filter.instMembership
nhds
Set.instSDiff
Set.instSingletonSet
nhdsWithin
β€”Filter.eq_or_neBot
Filter.eventually_bot
closure_mono
Set.diff_subset
mem_closure_iff_nhdsWithin_neBot
Set.diff_eq
Set.Iio_union_Ioi
Set.inter_union_distrib_left
nhdsWithin_union
Filter.eventually_sup
Ioo_subset_of_mem_closure
instOrderTopologyOrderDual
interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
interiorβ€”convex_iff_openSegment_subset
openSegment_closure_interior_subset_interior
interior_subset_closure
interior_closure_eq_interior_of_nonempty_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Nonempty
interior
closureβ€”subset_antisymm
Set.instAntisymmSubset
AffineMap.lineMap_apply_one
Filter.Eventually.exists_gt
nhdsGT_neBot
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Filter.Tendsto.eventually_mem
Continuous.tendsto'
AffineMap.lineMap_continuous
instIsTopologicalAddTorsor
mem_interior_iff_mem_nhds
openSegment_interior_closure_subset_interior
ContinuousSMul.continuousConstSMul
AffineMap.lineMap_apply_zero
image_openSegment
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Ioo_subset_openSegment
zero_lt_one
IsStrictOrderedRing.toZeroLEOneClass
NeZero.charZero_one
interior_mono
subset_closure
nhdsWithin_diff_eq_nhdsGT πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.instInter
Set.Iio
PartialOrder.toPreorder
Set.instEmptyCollection
Set.Nonempty
Set.Ioi
nhdsWithin
Set.instSDiff
Set.instSingletonSet
β€”Set.diff_eq
Set.Iio_union_Ioi
Set.inter_union_distrib_left
nhdsWithin_union
nhdsWithin_empty
nhdsWithin_inter_Ioi_eq_nhdsGT
sup_of_le_right
nhdsWithin_diff_eq_nhdsLT πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
Set.Iio
PartialOrder.toPreorder
Set.Ioi
Set.instEmptyCollection
nhdsWithin
Set.instSDiff
Set.instSingletonSet
β€”Set.diff_eq
Set.Iio_union_Ioi
Set.inter_union_distrib_left
nhdsWithin_union
nhdsWithin_inter_Iio_eq_nhdsLT
nhdsWithin_empty
sup_of_le_left
nhdsWithin_diff_eq_nhdsNE πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
Set.Iio
PartialOrder.toPreorder
Set.Ioi
nhdsWithin
Set.instSDiff
Set.instSingletonSet
Compl.compl
Set.instCompl
β€”Set.diff_eq
Set.Iio_union_Ioi
Set.inter_union_distrib_left
nhdsWithin_union
nhdsWithin_inter_Iio_eq_nhdsLT
nhdsWithin_inter_Ioi_eq_nhdsGT
nhdsWithin_inter_Iio_eq_nhdsLT πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
Set.Iio
PartialOrder.toPreorder
nhdsWithinβ€”nhdsWithin_inter_of_mem
mem_nhdsLT_iff_exists_Ioo_subset
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Ioo_subset_of_mem_closure
subset_closure
nhdsWithin_inter_Ioi_eq_nhdsGT πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set
Set.instMembership
closure
Set.Nonempty
Set.instInter
Set.Ioi
PartialOrder.toPreorder
nhdsWithinβ€”nhdsWithin_inter_of_mem
mem_nhdsGT_iff_exists_Ioo_subset
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Ioo_subset_of_mem_closure
subset_closure
nontrivial_iff_nonempty_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Set.Nontrivial
Set.Nonempty
interior
β€”Set.Nonempty.mono
interior_mono
segment_subset
inf_lt_sup
Set.nonempty_Ioo
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
interior_Icc
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
instNoMaxOrderOfNontrivial
segment_eq_Icc'
Set.eq_singleton_or_nontrivial
interior_subset
interior_singleton
instNeBotNhdsWithinComplSetSingletonOfNontrivial
openSegment_closure_interior_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
closure
interior
Set.instHasSubset
openSegment
β€”combo_closure_interior_mem_interior
LT.lt.le
openSegment_interior_closure_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
closure
Set.instHasSubset
openSegment
β€”combo_interior_closure_mem_interior
LT.lt.le
openSegment_interior_self_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
Set.instHasSubset
openSegment
β€”openSegment_interior_closure_subset_interior
subset_closure
openSegment_self_interior_subset_interior πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set
Set.instMembership
interior
Set.instHasSubset
openSegment
β€”openSegment_closure_interior_subset_interior
subset_closure
strictConvex πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Pairwise
Set
Set.instSDiff
interior
Set.Nonempty
segment
frontier
StrictConvexβ€”strictConvex'
Set.Pairwise.imp_on
segment_eq_image_lineMap
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
segment_subset
Set.mem_image_of_mem
strictConvex' πŸ“–mathematicalConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Set.Pairwise
Set
Set.instSDiff
interior
Set.instMembership
DFunLike.coe
AffineMap
DivisionRing.toRing
Field.toDivisionRing
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AffineMap.instFunLike
AffineMap.lineMap
StrictConvexβ€”strictConvex_iff_openSegment_subset
openSegment_interior_self_subset_interior
openSegment_self_interior_subset_interior
HasSubset.Subset.trans
Set.instIsTransSubset
openSegment_subset_union
Set.insert_subset_iff
Set.union_subset
subset_interior_image_homothety_of_one_lt πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Set
Set.instMembership
interior
Real.instLT
Real.instOne
Set.instHasSubset
Set.image
DFunLike.coe
AffineMap
CommRing.toRing
Real.commRing
addGroupIsAddTorsor
AffineMap.instFunLike
AffineMap.homothety
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_subset_interior_image_homothety_of_one_lt

IsPreconnected

Theorems

NameKindAssumesProvesValidatesDepends On
convex πŸ“–mathematicalIsPreconnected
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Convex
Real.semiring
Real.partialOrder
Real.instAddCommMonoid
Algebra.toSMul
Real.instCommSemiring
CommSemiring.toSemiring
Algebra.id
β€”Real.convex_iff_isPreconnected

Real

Theorems

NameKindAssumesProvesValidatesDepends On
ball_eq_openSegment πŸ“–mathematicalReal
instLT
instZero
Metric.ball
pseudoMetricSpace
openSegment
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
instSub
instAdd
β€”ball_eq_Ioo
openSegment_eq_Ioo
instIsStrictOrderedRing
LT.lt.trans
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_add_of_pos_right
closedBall_eq_segment πŸ“–mathematicalReal
instLE
instZero
Metric.closedBall
pseudoMetricSpace
segment
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
instSub
instAdd
β€”closedBall_eq_Icc
segment_eq_Icc
instIsStrictOrderedRing
LE.le.trans
sub_le_self
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_add_of_nonneg_right
convex_iff_isPreconnected πŸ“–mathematicalβ€”Convex
Real
semiring
partialOrder
instAddCommMonoid
Algebra.toSMul
instCommSemiring
CommSemiring.toSemiring
Algebra.id
IsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”convex_iff_ordConnected
instIsStrictOrderedRing
isPreconnected_iff_ordConnected
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_convexHull πŸ“–mathematicalβ€”IsClosed
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
β€”IsCompact.isClosed
isCompact_convexHull
isCompact_convexHull πŸ“–mathematicalβ€”IsCompact
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
Real
Real.semiring
Real.partialOrder
AddCommGroup.toAddCommMonoid
β€”IsScalarTower.left
convexHull_eq_image
Real.instIsStrictOrderedRing
IsCompact.image
isCompact_stdSimplex
LinearMap.continuous_on_pi
Finite.of_fintype
IsTopologicalAddGroup.toContinuousAdd

(root)

Definitions

NameCategoryTheorems
closedConvexHull πŸ“–CompOp
10 mathmath: subset_closedConvexHull, closedConvexHull_min, closedConvexHull_eq_closure_convexHull, closedConvexHull_closure_eq_closedConvexHull, toWeakSpace_closedConvexHull_eq, closure_subset_closedConvexHull, convex_closedConvexHull, isClosed_closedConvexHull, closedConvexHull_isClosed, convexHull_subset_closedConvexHull

Theorems

NameKindAssumesProvesValidatesDepends On
closedConvexHull_closure_eq_closedConvexHull πŸ“–mathematicalβ€”DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
closure
β€”subset_antisymm
Set.instAntisymmSubset
ClosureOperator.idempotent
ClosureOperator.monotone
closure_subset_closedConvexHull
subset_closure
closedConvexHull_eq_closure_convexHull πŸ“–mathematicalβ€”DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
closure
convexHull
AddCommGroup.toAddCommMonoid
β€”subset_antisymm
Set.instAntisymmSubset
closedConvexHull_min
subset_trans
Set.instIsTransSubset
subset_convexHull
subset_closure
Convex.closure
convex_convexHull
isClosed_closure
closure_minimal
convexHull_subset_closedConvexHull
isClosed_closedConvexHull
closedConvexHull_isClosed πŸ“–mathematicalβ€”ClosureOperator.IsClosed
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
closedConvexHull
Convex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsClosed
β€”β€”
closedConvexHull_min πŸ“–mathematicalSet
Set.instHasSubset
Convex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
β€”ClosureOperator.closure_min
closure_openSegment πŸ“–mathematicalβ€”closure
openSegment
Ring.toSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
segment
β€”segment_eq_image
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
openSegment_eq_image
closure_Ioo
zero_ne_one'
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
image_closure_of_isCompact
Bornology.IsBounded.isCompact_closure
Metric.isBounded_Ioo
Continuous.continuousOn
Continuous.fun_add
Continuous.smul
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
continuous_const
continuous_id'
closure_subset_closedConvexHull πŸ“–mathematicalβ€”Set
Set.instHasSubset
closure
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
β€”closure_minimal
subset_closedConvexHull
isClosed_closedConvexHull
convexHull_subset_closedConvexHull πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
convexHull
AddCommGroup.toAddCommMonoid
closedConvexHull
β€”convexHull_min
subset_closedConvexHull
convex_closedConvexHull
convex_closedConvexHull πŸ“–mathematicalβ€”Convex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
β€”ClosureOperator.isClosed_closure
convex_closed_sInter πŸ“–mathematicalConvex
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsClosed
Set.sInterβ€”starConvex_sInter
isClosed_sInter
isClosed_closedConvexHull πŸ“–mathematicalβ€”IsClosed
DFunLike.coe
ClosureOperator
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
β€”ClosureOperator.isClosed_closure
segment_subset_closure_openSegment πŸ“–mathematicalβ€”Set
Set.instHasSubset
segment
Ring.toSemiring
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddCommGroup.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
closure
openSegment
β€”segment_eq_image
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
openSegment_eq_image
closure_Ioo
zero_ne_one'
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
image_closure_subset_closure_image
Continuous.fun_add
Continuous.smul
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
LinearOrderedAddCommGroup.toIsTopologicalAddGroup
continuous_const
continuous_id'
subset_closedConvexHull πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
ClosureOperator
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
ClosureOperator.instFunLike
closedConvexHull
β€”ClosureOperator.le_closure

---

← Back to Index