Documentation Verification Report

Uniform

๐Ÿ“ Source: Mathlib/Analysis/Convex/Uniform.lean

Statistics

MetricCount
DefinitionsUniformConvexSpace
1
TheoremstoStrictConvexSpace, uniform_convex, exists_forall_closed_ball_dist_add_le_two_mul_sub, exists_forall_closed_ball_dist_add_le_two_sub, exists_forall_sphere_dist_add_le_two_sub
5
Total6

UniformConvexSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toStrictConvexSpace ๐Ÿ“–mathematicalโ€”StrictConvexSpace
Real
Real.normedField
Real.partialOrder
โ€”StrictConvexSpace.of_norm_add_ne_two
Nat.instAtLeastTwoHAddOfNat
exists_forall_closed_ball_dist_add_le_two_sub
norm_sub_pos_iff
LT.lt.ne
LE.le.trans_lt
Eq.le
le_rfl
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
uniform_convex ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
UniformConvexSpace ๐Ÿ“–CompData
2 mathmath: InnerProductSpace.toUniformConvexSpace, InnerProductSpaceable.to_uniformConvexSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_forall_closed_ball_dist_add_le_two_mul_sub ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Real.instSub
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
โ€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
LT.lt.not_ge
LE.le.trans
norm_sub_le
add_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
exists_forall_closed_ball_dist_add_le_two_sub
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
norm_smul_of_nonneg
inv_nonneg
LT.lt.le
div_eq_inv_mul
div_le_one
sub_mul
div_le_iffโ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
div_le_div_iff_of_pos_right
exists_forall_closed_ball_dist_add_le_two_sub ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
โ€”Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
zero_lt_three
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
exists_forall_sphere_dist_add_le_two_sub
lt_min
one_half_pos
le_or_gt
one_add_one_eq_two
LE.le.trans
norm_add_le_of_le
Eq.le
sub_add_eq_add_sub
Eq.ge
add_sub_assoc
sub_pos_of_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
min_lt_of_left_lt
one_half_lt_one
norm_smul_of_nonneg
inv_nonneg
norm_nonneg
inv_mul_cancelโ‚€
LT.lt.ne'
LT.lt.trans
one_smul
sub_smul
sub_nonneg_of_le
one_le_invโ‚€
LT.lt.trans_le
sub_mul
one_mul
sub_le_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
sub_le_sub
add_le_add
LT.lt.le
min_le_of_right_le
min_le_left
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isInt_neg
add_zero
Mathlib.Tactic.Abel.zero_termg
sub_le_iff_le_add
norm_sub_rev
add_assoc
norm_addโ‚ƒ_le
min_le_right
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
exists_forall_sphere_dist_add_le_two_sub ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Real.instSub
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
โ€”UniformConvexSpace.uniform_convex

---

โ† Back to Index