Documentation Verification Report

Inversion

πŸ“ Source: Mathlib/Analysis/Fourier/Inversion.lean

Statistics

MetricCount
Definitions0
TheoremsfourierInv_fourier_eq, fourier_fourierInv_eq, fourier_inversion, fourier_inversion_inv, fourierInv_fourier_eq, fourier_fourierInv_eq, fourier_inversion, fourier_inversion_inv, tendsto_integral_cexp_sq_smul, tendsto_integral_gaussian_smul, tendsto_integral_gaussian_smul'
11
Total11

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
fourierInv_fourier_eq πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”MeasureTheory.Integrable.fourierInv_fourier_eq
continuousAt
fourier_fourierInv_eq πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”MeasureTheory.Integrable.fourier_fourierInv_eq
continuousAt
fourier_inversion πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”fourierInv_fourier_eq
fourier_inversion_inv πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
MeasureTheory.Integrable
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”fourier_fourierInv_eq

MeasureTheory.Integrable

Theorems

NameKindAssumesProvesValidatesDepends On
fourierInv_fourier_eq πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
ContinuousAt
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Nat.instAtLeastTwoHAddOfNat
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Real.tendsto_integral_gaussian_smul
Real.tendsto_integral_gaussian_smul'
fourier_fourierInv_eq πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
ContinuousAt
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”Real.fourierInv_comm
fourierInv_fourier_eq
fourier_inversion πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
ContinuousAt
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”fourierInv_fourier_eq
fourier_inversion_inv πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
Real.instFourierTransform
ContinuousAt
FourierTransformInv.fourierInv
Real.instFourierTransformInv
β€”fourier_fourierInv_eq

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_integral_cexp_sq_smul πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
Filter.Tendsto
Real
MeasureTheory.integral
NormedSpace.complexToReal
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Complex.instNormedField
Complex.exp
Complex.instMul
Complex.instNeg
Complex.ofReal
instInv
Monoid.toNatPow
Norm.norm
NormedAddCommGroup.toNorm
Filter.atTop
instPreorder
nhds
β€”MeasureTheory.tendsto_integral_filter_of_dominated_convergence
instIsCountablyGenerated_atTop
instOrderTopologyReal
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopologyReal
Filter.univ_mem'
MeasureTheory.AEStronglyMeasurable.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Continuous.aestronglyMeasurable
BorelSpace.opensMeasurable
PseudoEMetricSpace.pseudoMetrizableSpace
secondCountableTopologyEither_of_right
secondCountable_of_proper
Complex.instProperSpace
Continuous.cexp
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
continuous_const
continuous_id'
Continuous.pow
Complex.continuous_ofReal
Continuous.norm
Filter.mp_mem
MeasureTheory.Measure.instOuterMeasureClass
Filter.Ici_mem_atTop
Complex.ofReal_inv
neg_mul
norm_smul
NormedSpace.toNormSMulClass
Complex.norm_real
one_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
instIsOrderedRing
abs_exp
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
inv_nonneg_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
norm_nonneg
MeasureTheory.Integrable.norm
neg_zero
MulZeroClass.zero_mul
Complex.exp_zero
one_smul
Filter.Tendsto.smul_const
Filter.Tendsto.cexp
Filter.Tendsto.mul_const
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
Filter.Tendsto.ofReal
tendsto_inv_atTop_zero
tendsto_integral_gaussian_smul πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
FourierTransform.fourier
instFourierTransform
Filter.Tendsto
Real
MeasureTheory.integral
NormedSpace.complexToReal
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Complex.instNormedField
Complex.instMul
Complex.instPow
Complex.ofReal
pi
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNatCast
Module.finrank
semiring
normedField
InnerProductSpace.toNormedSpace
instRCLike
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Complex.exp
Complex.instNeg
Monoid.toNatPow
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Filter.atTop
instPreorder
nhds
FourierTransformInv.fourierInv
instFourierTransformInv
β€”Nat.instAtLeastTwoHAddOfNat
Algebra.to_smulCommClass
Continuous.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
continuous_inner
neg_neg
VectorFourier.fourierIntegral_convergent_iff
continuous_fourierChar
Submonoid.smul_def
fourierChar_apply
smul_smul
Complex.exp_add
real_inner_comm
Complex.ofReal_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_left
fourierInv_eq
tendsto_integral_cexp_sq_smul
Filter.Tendsto.congr'
Filter.mp_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
Filter.univ_mem'
GaussianFourier.integrable_cexp_neg_mul_sq_norm_add
Complex.ofReal_inv
Complex.inv_re
Complex.normSq_ofReal
div_self_mul_self'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
neg_mul
SMulCommClass.symm
flip_innerβ‚—
VectorFourier.integral_fourierIntegral_smul_eq_flip
MeasureTheory.Measure.IsAddHaarMeasure.sigmaFinite
instIsAddHaarMeasureVolume
SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.SecondCountableTopology.to_separableSpace
secondCountable_of_proper
FiniteDimensional.proper_real
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace
locallyCompact_of_proper
fourier_gaussian_innerProductSpace'
div_inv_eq_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
tendsto_integral_gaussian_smul' πŸ“–mathematicalMeasureTheory.Integrable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedAddGroup.toContinuousENorm
SeminormedAddCommGroup.toSeminormedAddGroup
MeasureTheory.MeasureSpace.toMeasurableSpace
measureSpaceOfInnerProductSpace
MeasureTheory.MeasureSpace.volume
ContinuousAt
Filter.Tendsto
Real
MeasureTheory.integral
NormedSpace.complexToReal
Complex
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Complex.instSemiring
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Complex.instNormedField
Complex.instMul
Complex.instPow
Complex.ofReal
pi
DivInvMonoid.toDiv
Complex.instDivInvMonoid
Complex.instNatCast
Module.finrank
semiring
normedField
InnerProductSpace.toNormedSpace
instRCLike
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Complex.exp
Complex.instNeg
Monoid.toNatPow
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Filter.atTop
instPreorder
nhds
β€”Nat.instAtLeastTwoHAddOfNat
tendsto_integral_comp_smul_smul_of_integrable'
instIsAddHaarMeasureVolume
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
rpow_pos_of_pos
pi_pos
exp_pos
MeasureTheory.integral_const_mul
GaussianFourier.integral_rexp_neg_mul_sq_norm
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
pow_one
rpow_natCast
rpow_sub
rpow_mul
pi_nonneg
rpow_add
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.RingNF.nat_rawCast_1
mul_one
add_zero
rpow_zero
Filter.tendsto_const_mul_atTop_of_pos
Filter.Tendsto.comp
Filter.tendsto_pow_atTop
instIsOrderedRing
two_ne_zero
tendsto_norm_cobounded_atTop
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_rpow_mul_exp_neg_mul_atTop_nhds_zero
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
neg_mul
one_mul
mul_rpow
rpow_nonneg
norm_nonneg
mul_assoc
mul_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
MulZeroClass.mul_zero
tendsto_rpow_atTop
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
instNontrivial
Filter.Tendsto.congr'
Filter.mp_mem
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Filter.univ_mem'
Complex.coe_smul
Complex.ofReal_mul
Complex.ofReal_exp
Complex.mul_cpow_ofReal_nonneg
LT.lt.le
Complex.ofReal_cpow
div_eq_inv_mul
Complex.ofReal_inv
Nat.cast_one
norm_smul
NormedSpace.toNormSMulClass
mul_pow
sq_abs
rpow_ofNat
inv_mul_cancelβ‚€
rpow_one

---

← Back to Index