Documentation Verification Report

Convex

πŸ“ Source: Mathlib/Analysis/InnerProductSpace/Convex.lean

Statistics

MetricCount
Definitions0
TheoremstoUniformConvexSpace
1
Total1

InnerProductSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toUniformConvexSpace πŸ“–mathematicalβ€”UniformConvexSpaceβ€”Nat.instAtLeastTwoHAddOfNat
sub_pos_of_lt
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.sqrt_lt'
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
sub_sub_cancel
Real.le_sqrt_of_sq_le
sq
eq_sub_iff_add_eq
parallelogram_law_with_norm
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_congr
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.nat_rawCast_1
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
Mathlib.Tactic.RingNF.add_neg
sub_le_sub_left
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt

---

← Back to Index