Documentation Verification Report

EuclideanDist

📁 Source: Mathlib/Analysis/InnerProductSpace/EuclideanDist.lean

Statistics

MetricCount
Definitionsball, closedBall, dist, toEuclidean
4
Theoremseuclidean_dist, ball_eq_preimage, ball_mem_nhds, ball_subset_closedBall, closedBall_eq_image, closedBall_eq_preimage, closedBall_mem_nhds, closure_ball, exists_pos_lt_subset_ball, isClosed_closedBall, isCompact_closedBall, isOpen_ball, mem_ball_self, nhds_basis_ball, nhds_basis_closedBall
15
Total19

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
euclidean_dist 📖mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop.some
ENat
Real.normedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
RCLike.toInnerProductSpaceReal
Euclidean.dist
NormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
NormedAddCommGroup.toMetricSpace
NormedSpace.toModule
Real.normedField
IsBoundedSMul.continuousSMul
Real.pseudoMetricSpace
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
AddCommGroup.toAddCommMonoid
NormedSpace.toIsBoundedSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
dist
fact_one_le_two_ennreal
RingHomInvPair.ids
comp
ContinuousLinearEquiv.contDiff
ContinuousLinearEquiv.injective

Euclidean

Definitions

NameCategoryTheorems
ball 📖CompOp
7 mathmath: mem_ball_self, ball_mem_nhds, isOpen_ball, ball_subset_closedBall, nhds_basis_ball, ball_eq_preimage, closure_ball
closedBall 📖CompOp
8 mathmath: closedBall_eq_image, nhds_basis_closedBall, isCompact_closedBall, ball_subset_closedBall, closedBall_eq_preimage, closedBall_mem_nhds, closure_ball, isClosed_closedBall
dist 📖CompOp
1 mathmath: ContDiff.euclidean_dist

Theorems

NameKindAssumesProvesValidatesDepends On
ball_eq_preimage 📖mathematicalball
Set.preimage
EuclideanSpace
Real
Module.finrank
Real.semiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
PiLp.normedAddCommGroup
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
Real.instRing
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
toEuclidean
Metric.ball
PiLp.instPseudoMetricSpace
ball_mem_nhds 📖mathematicalReal
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
nhds
ball
Filter.HasBasis.mem_of_mem
nhds_basis_ball
ball_subset_closedBall 📖mathematicalSet
Set.instHasSubset
ball
closedBall
le_of_lt
closedBall_eq_image 📖mathematicalclosedBall
Set.image
EuclideanSpace
Real
Module.finrank
Real.semiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
PiLp.normedAddCommGroup
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
Real.instRing
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
toEuclidean
Metric.closedBall
PiLp.instPseudoMetricSpace
RingHomInvPair.ids
fact_one_le_two_ennreal
ContinuousLinearEquiv.image_symm_eq_preimage
closedBall_eq_preimage
closedBall_eq_preimage 📖mathematicalclosedBall
Set.preimage
EuclideanSpace
Real
Module.finrank
Real.semiring
AddCommGroup.toAddCommMonoid
DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
PiLp.normedAddCommGroup
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
Real.instRing
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
toEuclidean
Metric.closedBall
PiLp.instPseudoMetricSpace
closedBall_mem_nhds 📖mathematicalReal
Real.instLT
Real.instZero
Set
Filter
Filter.instMembership
nhds
closedBall
Filter.HasBasis.mem_of_mem
nhds_basis_closedBall
closure_ball 📖mathematicalclosure
ball
closedBall
RingHomInvPair.ids
fact_one_le_two_ennreal
ball_eq_preimage
ContinuousLinearEquiv.preimage_closure
closure_ball
closedBall_eq_preimage
exists_pos_lt_subset_ball 📖mathematicalReal
Real.instLT
Real.instZero
Set
Set.instHasSubset
ball
Set.instMembership
Set.Ioo
Real.instPreorder
RingHomInvPair.ids
fact_one_le_two_ennreal
exists_pos_lt_subset_ball
FiniteDimensional.proper_real
WithLp.instModuleFinite
FiniteDimensional.finiteDimensional_pi'
Finite.of_fintype
FiniteDimensional.rclike_to_real
ContinuousLinearEquiv.isClosed_image
Set.image_subset_iff
ball_eq_preimage
isClosed_closedBall 📖mathematicalIsClosed
closedBall
IsCompact.isClosed
isCompact_closedBall
isCompact_closedBall 📖mathematicalIsCompact
closedBall
RingHomInvPair.ids
fact_one_le_two_ennreal
closedBall_eq_image
IsCompact.image
ProperSpace.isCompact_closedBall
FiniteDimensional.proper_real
WithLp.instModuleFinite
FiniteDimensional.finiteDimensional_pi'
Finite.of_fintype
FiniteDimensional.rclike_to_real
ContinuousLinearEquiv.continuous
isOpen_ball 📖mathematicalIsOpen
ball
IsOpen.preimage
RingHomInvPair.ids
fact_one_le_two_ennreal
ContinuousLinearEquiv.continuous
Metric.isOpen_ball
mem_ball_self 📖mathematicalReal
Real.instLT
Real.instZero
Set
Set.instMembership
ball
Metric.mem_ball_self
fact_one_le_two_ennreal
RingHomInvPair.ids
nhds_basis_ball 📖mathematicalFilter.HasBasis
Real
nhds
Real.instLT
Real.instZero
ball
RingHomInvPair.ids
fact_one_le_two_ennreal
Homeomorph.nhds_eq_comap
Filter.HasBasis.comap
Metric.nhds_basis_ball
nhds_basis_closedBall 📖mathematicalFilter.HasBasis
Real
nhds
Real.instLT
Real.instZero
closedBall
RingHomInvPair.ids
fact_one_le_two_ennreal
Homeomorph.nhds_eq_comap
Filter.HasBasis.comap
Metric.nhds_basis_closedBall

(root)

Definitions

NameCategoryTheorems
toEuclidean 📖CompOp
3 mathmath: Euclidean.closedBall_eq_image, Euclidean.closedBall_eq_preimage, Euclidean.ball_eq_preimage

---

← Back to Index