Documentation Verification Report

Laplacian

πŸ“ Source: Mathlib/Analysis/InnerProductSpace/Laplacian.lean

Statistics

MetricCount
Definitionslaplacian, instLaplacian, laplacianWithin, Β«termΞ”[_]_Β», Laplacian, bilinearIteratedFDerivTwo, bilinearIteratedFDerivWithinTwo, tensorIteratedFDerivTwo, tensorIteratedFDerivWithinTwo
9
TheoremslaplacianWithin_add_nhdsWithin, laplacian_CLM_comp_left, laplacian_CLM_comp_left_nhds, laplacian_add, laplacian_add_nhds, laplacianWithin_CLM_comp_left, laplacianWithin_CLM_comp_left_nhds, laplacianWithin_add, laplacianWithin_CLE_comp_left, laplacianWithin_congr_nhdsWithin, laplacianWithin_eq_iteratedDerivWithin_real, laplacianWithin_eq_iteratedFDerivWithin_complexPlane, laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis, laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis, laplacianWithin_smul, laplacianWithin_smul_nhds, laplacianWithin_univ, laplacian_CLE_comp_left, laplacian_congr_nhds, laplacian_eq_iteratedDeriv_real, laplacian_eq_iteratedFDeriv_complexPlane, laplacian_eq_iteratedFDeriv_orthonormalBasis, laplacian_eq_iteratedFDeriv_stdOrthonormalBasis, laplacian_smul, laplacian_smul_nhds, bilinearIteratedFDerivTwo_eq_iteratedFDeriv, bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv, tensorIteratedFDerivTwo_eq_iteratedFDeriv, tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin
29
Total38

ContDiffAt

Theorems

NameKindAssumesProvesValidatesDepends On
laplacianWithin_add_nhdsWithin πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
Filter.EventuallyEq
nhdsWithin
InnerProductSpace.laplacianWithin
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Set.insert_eq_of_mem
Filter.mp_mem
eventually_mem_nhdsWithin
ContDiffWithinAt.eventually
Filter.univ_mem'
ContDiffWithinAt.laplacianWithin_add
laplacian_CLM_comp_left πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Laplacian.laplacian
InnerProductSpace.instLaplacian
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
β€”Nat.instAtLeastTwoHAddOfNat
InnerProductSpace.laplacian_eq_iteratedFDeriv_stdOrthonormalBasis
Finset.sum_congr
ContinuousLinearMap.iteratedFDeriv_comp_left
ContinuousLinearMap.compContinuousMultilinearMap_coe
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
laplacian_CLM_comp_left_nhds πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Filter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Laplacian.laplacian
InnerProductSpace.instLaplacian
DFunLike.coe
ContinuousLinearMap
Real.semiring
RingHom.id
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
ContinuousLinearMap.funLike
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
eventually
Filter.univ_mem'
laplacian_CLM_comp_left
laplacian_add πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Laplacian.laplacian
InnerProductSpace.instLaplacian
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
InnerProductSpace.laplacian_eq_iteratedFDeriv_stdOrthonormalBasis
Finset.sum_congr
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
iteratedFDeriv_add_apply
laplacian_add_nhds πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Filter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Laplacian.laplacian
InnerProductSpace.instLaplacian
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
eventually
Filter.univ_mem'
laplacian_add

ContDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
laplacianWithin_CLM_comp_left πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
InnerProductSpace.laplacianWithin
DFunLike.coe
ContinuousLinearMap
RingHom.id
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
β€”Nat.instAtLeastTwoHAddOfNat
InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis
Finset.sum_congr
ContinuousLinearMap.iteratedFDerivWithin_comp_left
ContinuousLinearMap.compContinuousMultilinearMap_coe
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
laplacianWithin_CLM_comp_left_nhds πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.EventuallyEq
nhdsWithin
InnerProductSpace.laplacianWithin
DFunLike.coe
ContinuousLinearMap
RingHom.id
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
eventually_mem_nhdsWithin
Filter.Eventually.filter_mono
nhdsWithin_mono
Set.subset_insert
eventually
Filter.univ_mem'
laplacianWithin_CLM_comp_left
laplacianWithin_add πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
InnerProductSpace.laplacianWithin
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis
Finset.sum_congr
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
iteratedFDerivWithin_add_apply

InnerProductSpace

Definitions

NameCategoryTheorems
instLaplacian πŸ“–CompOp
14 mathmath: ContDiffAt.laplacian_CLM_comp_left, ContDiffAt.laplacian_add, laplacian_smul, ContDiffAt.laplacian_add_nhds, laplacian_congr_nhds, laplacianWithin_univ, laplacian_eq_iteratedFDeriv_stdOrthonormalBasis, laplacian_eq_iteratedFDeriv_complexPlane, ContDiffAt.laplacian_CLM_comp_left_nhds, laplacian_eq_iteratedFDeriv_orthonormalBasis, laplacian_eq_iteratedDeriv_real, laplacian_smul_nhds, laplacian_CLE_comp_left, SchwartzMap.laplacian_apply
laplacianWithin πŸ“–CompOp
13 mathmath: ContDiffWithinAt.laplacianWithin_add, laplacianWithin_eq_iteratedFDerivWithin_complexPlane, laplacianWithin_smul, laplacianWithin_congr_nhdsWithin, laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis, ContDiffWithinAt.laplacianWithin_CLM_comp_left, laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis, ContDiffWithinAt.laplacianWithin_CLM_comp_left_nhds, laplacianWithin_eq_iteratedDerivWithin_real, laplacianWithin_univ, ContDiffAt.laplacianWithin_add_nhdsWithin, laplacianWithin_smul_nhds, laplacianWithin_CLE_comp_left
Β«termΞ”[_]_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
laplacianWithin_CLE_comp_left πŸ“–mathematicalUniqueDiffOn
Real
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
toNormedSpace
Real.instRCLike
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
laplacianWithin
DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
β€”RingHomInvPair.ids
laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis
Finset.sum_congr
ContinuousLinearEquiv.iteratedFDerivWithin_comp_left
ContinuousLinearMap.compContinuousMultilinearMap_coe
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
ContinuousLinearEquiv.continuousSemilinearEquivClass
laplacianWithin_congr_nhdsWithin πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
UniqueDiffOn
Real
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
toNormedSpace
Real.instRCLike
laplacianWithinβ€”Filter.mp_mem
eventually_mem_nhdsWithin
Filter.EventuallyEq.iteratedFDerivWithin
Filter.univ_mem'
laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis
Finset.sum_congr
laplacianWithin_eq_iteratedDerivWithin_real πŸ“–mathematicalUniqueDiffOn
Real
Real.semiring
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set
Set.instMembership
laplacianWithin
Real.normedAddCommGroup
FiniteDimensional.rclike_to_real
iteratedDerivWithin
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
β€”FiniteDimensional.rclike_to_real
laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis
Finset.sum_congr
Finset.univ_unique
OrthonormalBasis.singleton_apply
Finset.sum_const
Finset.card_singleton
one_smul
Fintype.complete
Matrix.cons_val_fin_one
laplacianWithin_eq_iteratedFDerivWithin_complexPlane πŸ“–mathematicalUniqueDiffOn
Real
Complex
Real.semiring
Complex.addCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
toNormedSpace
Real.instRCLike
instInnerProductSpaceRealComplex
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
Set
Set.instMembership
laplacianWithin
Complex.instNormedAddCommGroup
FiniteDimensional.rclike_to_real
Complex.instRCLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DFunLike.coe
ContinuousMultilinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
ContinuousMultilinearMap.funLike
iteratedFDerivWithin
Matrix.vecCons
Complex.instOne
Matrix.vecEmpty
Complex.I
β€”FiniteDimensional.rclike_to_real
laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis
Finset.sum_congr
Complex.coe_orthonormalBasisOneI
Fin.sum_univ_two
Matrix.cons_val_fin_one
laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis πŸ“–mathematicalUniqueDiffOn
Real
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
toNormedSpace
Real.instRCLike
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
laplacianWithin
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.univ
DFunLike.coe
ContinuousMultilinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
ContinuousMultilinearMap.funLike
iteratedFDerivWithin
Matrix.vecCons
OrthonormalBasis
OrthonormalBasis.instFunLike
Matrix.vecEmpty
β€”canonicalCovariantTensor_eq_sum
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin
laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis πŸ“–mathematicalUniqueDiffOn
Real
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
toNormedSpace
Real.instRCLike
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
laplacianWithin
Finset.sum
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.univ
Fin.fintype
DFunLike.coe
ContinuousMultilinearMap
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
ContinuousMultilinearMap.funLike
iteratedFDerivWithin
Matrix.vecCons
OrthonormalBasis
OrthonormalBasis.instFunLike
stdOrthonormalBasis
Matrix.vecEmpty
β€”laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis
laplacianWithin_smul πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
laplacianWithin
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
laplacianWithin_eq_iteratedFDerivWithin_stdOrthonormalBasis
Finset.sum_congr
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.to_smulCommClass
iteratedFDerivWithin_const_smul_apply
Finset.smul_sum
laplacianWithin_smul_nhds πŸ“–mathematicalContDiffWithinAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
UniqueDiffOn
Real.semiring
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Filter.EventuallyEq
nhdsWithin
laplacianWithin
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
eventually_mem_nhdsWithin
Filter.Eventually.filter_mono
nhdsWithin_mono
Set.subset_insert
ContDiffWithinAt.eventually
Filter.univ_mem'
laplacianWithin_smul
laplacianWithin_univ πŸ“–mathematicalβ€”laplacianWithin
Set.univ
Laplacian.laplacian
instLaplacian
β€”smulCommClass_self
fderivWithin_univ
laplacian_CLE_comp_left πŸ“–mathematicalβ€”Laplacian.laplacian
instLaplacian
DFunLike.coe
ContinuousLinearEquiv
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
β€”RingHomInvPair.ids
laplacian_eq_iteratedFDeriv_stdOrthonormalBasis
Finset.sum_congr
ContinuousLinearEquiv.iteratedFDeriv_comp_left
ContinuousLinearMap.compContinuousMultilinearMap_coe
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
ContinuousLinearEquiv.continuousSemilinearEquivClass
laplacian_congr_nhds πŸ“–mathematicalFilter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Laplacian.laplacian
instLaplacian
β€”Filter.mp_mem
Filter.EventuallyEq.iteratedFDeriv
Filter.univ_mem'
laplacian_eq_iteratedFDeriv_stdOrthonormalBasis
Finset.sum_congr
laplacian_eq_iteratedDeriv_real πŸ“–mathematicalβ€”Laplacian.laplacian
instLaplacian
Real
Real.normedAddCommGroup
RCLike.toInnerProductSpaceReal
Real.instRCLike
FiniteDimensional.rclike_to_real
iteratedDeriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
β€”FiniteDimensional.rclike_to_real
laplacianWithin_univ
iteratedDerivWithin_univ
laplacianWithin_eq_iteratedDerivWithin_real
Real.punctured_nhds_module_neBot
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Real.instNontrivial
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
laplacian_eq_iteratedFDeriv_complexPlane πŸ“–mathematicalβ€”Laplacian.laplacian
instLaplacian
Complex
Complex.instNormedAddCommGroup
instInnerProductSpaceRealComplex
FiniteDimensional.rclike_to_real
Complex.instRCLike
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DFunLike.coe
ContinuousMultilinearMap
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedSpace.toModule
toNormedSpace
Real.instRCLike
ContinuousMultilinearMap.funLike
iteratedFDeriv
Matrix.vecCons
Complex.instOne
Matrix.vecEmpty
Complex.I
β€”FiniteDimensional.rclike_to_real
laplacian_eq_iteratedFDeriv_orthonormalBasis
Finset.sum_congr
Complex.coe_orthonormalBasisOneI
Fin.sum_univ_two
Matrix.cons_val_fin_one
laplacian_eq_iteratedFDeriv_orthonormalBasis πŸ“–mathematicalβ€”Laplacian.laplacian
instLaplacian
Finset.sum
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Finset.univ
DFunLike.coe
ContinuousMultilinearMap
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NormedSpace.toModule
toNormedSpace
Real.instRCLike
ContinuousMultilinearMap.funLike
iteratedFDeriv
Matrix.vecCons
OrthonormalBasis
OrthonormalBasis.instFunLike
Matrix.vecEmpty
β€”canonicalCovariantTensor_eq_sum
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Finset.sum_congr
tensorIteratedFDerivTwo_eq_iteratedFDeriv
laplacian_eq_iteratedFDeriv_stdOrthonormalBasis πŸ“–mathematicalβ€”Laplacian.laplacian
instLaplacian
Finset.sum
Module.finrank
Real
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Real.instRCLike
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
toNormedSpace
Finset.univ
Fin.fintype
DFunLike.coe
ContinuousMultilinearMap
NontriviallyNormedField.toNormedField
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
ContinuousMultilinearMap.funLike
iteratedFDeriv
Matrix.vecCons
OrthonormalBasis
OrthonormalBasis.instFunLike
stdOrthonormalBasis
Matrix.vecEmpty
β€”laplacian_eq_iteratedFDeriv_orthonormalBasis
laplacian_smul πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Laplacian.laplacian
instLaplacian
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”Nat.instAtLeastTwoHAddOfNat
laplacian_eq_iteratedFDeriv_stdOrthonormalBasis
Finset.sum_congr
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
IsScalarTower.to_smulCommClass
iteratedFDeriv_const_smul_apply
Finset.smul_sum
laplacian_smul_nhds πŸ“–mathematicalContDiffAt
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
Filter.EventuallyEq
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Laplacian.laplacian
instLaplacian
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Module.toDistribMulAction
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
β€”Nat.instAtLeastTwoHAddOfNat
Filter.mp_mem
ContDiffAt.eventually
Filter.univ_mem'
laplacian_smul

InnerProductSpace.InnerProduct

Definitions

NameCategoryTheorems
laplacian πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
Laplacian πŸ“–CompDataβ€”
bilinearIteratedFDerivTwo πŸ“–CompOp
1 mathmath: bilinearIteratedFDerivTwo_eq_iteratedFDeriv
bilinearIteratedFDerivWithinTwo πŸ“–CompOp
1 mathmath: bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv
tensorIteratedFDerivTwo πŸ“–CompOp
1 mathmath: tensorIteratedFDerivTwo_eq_iteratedFDeriv
tensorIteratedFDerivWithinTwo πŸ“–CompOp
1 mathmath: tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin

Theorems

NameKindAssumesProvesValidatesDepends On
bilinearIteratedFDerivTwo_eq_iteratedFDeriv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
bilinearIteratedFDerivTwo
ContinuousMultilinearMap
ContinuousMultilinearMap.funLike
iteratedFDeriv
Matrix.vecCons
Matrix.vecEmpty
β€”IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
iteratedFDeriv_two_apply
Matrix.cons_val_fin_one
bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv πŸ“–mathematicalUniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
LinearMap.instFunLike
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
bilinearIteratedFDerivWithinTwo
ContinuousMultilinearMap
ContinuousMultilinearMap.funLike
iteratedFDerivWithin
Matrix.vecCons
Matrix.vecEmpty
β€”IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
SeminormedAddCommGroup.toIsTopologicalAddGroup
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
iteratedFDerivWithin_two_apply
Matrix.cons_val_fin_one
tensorIteratedFDerivTwo_eq_iteratedFDeriv πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
Semifield.toCommSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
tensorIteratedFDerivTwo
TensorProduct.tmul
ContinuousMultilinearMap
ContinuousMultilinearMap.funLike
iteratedFDeriv
Matrix.vecCons
Matrix.vecEmpty
β€”smulCommClass_self
bilinearIteratedFDerivTwo_eq_iteratedFDeriv
tensorIteratedFDerivTwo.eq_1
TensorProduct.lift.tmul
tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin πŸ“–mathematicalUniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instMembership
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
TensorProduct
Semifield.toCommSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
TensorProduct.addCommMonoid
TensorProduct.instModule
LinearMap.instFunLike
tensorIteratedFDerivWithinTwo
TensorProduct.tmul
ContinuousMultilinearMap
ContinuousMultilinearMap.funLike
iteratedFDerivWithin
Matrix.vecCons
Matrix.vecEmpty
β€”smulCommClass_self
bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv
tensorIteratedFDerivWithinTwo.eq_1
TensorProduct.lift.tmul

---

← Back to Index