Documentation Verification Report

LinearPMap

πŸ“ Source: Mathlib/Analysis/InnerProductSpace/LinearPMap.lean

Statistics

MetricCount
DefinitionsIsFormalAdjoint, adjoint, adjointAux, adjointDomain, adjointDomainMkCLM, adjointDomainMkCLMExtend, instStar, Β«term_†», adjoint
9
TheoremstoPMap_adjoint_eq_adjoint_toPMap_of_dense, dense_domain, isClosed, le_adjoint, adjointAux_inner, adjointAux_unique, adjointDomainMkCLMExtend_apply, adjointDomainMkCLM_apply, adjoint_apply_eq, adjoint_apply_of_dense, adjoint_apply_of_not_dense, adjoint_graph_eq_graph_adjoint, adjoint_isClosed, adjoint_isFormalAdjoint, graph_adjoint_toLinearPMap_eq_adjoint, isSelfAdjoint_def, mem_adjoint_domain_iff, mem_adjoint_domain_of_exists, mem_adjoint_iff
19
Total28

ContinuousLinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
toPMap_adjoint_eq_adjoint_toPMap_of_dense πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
LinearPMap.adjoint
LinearMap.toPMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedAddCommGroup.toAddCommGroup
toLinearMap
RingHom.id
Semiring.toNonAssocSemiring
DFunLike.coe
LinearIsometryEquiv
CommSemiring.toSemiring
Semifield.toCommSemiring
starRingEnd
RCLike.toStarRing
RingHomInvPair.instStarRingEnd
ContinuousLinearMap
toSeminormedAddCommGroup
DenselyNormedField.toNontriviallyNormedField
RingHomIsometric.ids
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toIsBoundedSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
adjoint
Top.top
AddCommGroup.toAddCommMonoid
Submodule.instTop
β€”LinearPMap.ext
RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
SeminormedAddCommGroup.toIsTopologicalAddGroup
Submodule.ext
cont
RingHomCompTriple.ids
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Algebra.to_smulCommClass
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
LinearPMap.adjoint_apply_eq
adjoint_inner_left

IsSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
dense_domain πŸ“–mathematicalIsSelfAdjoint
LinearPMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
LinearPMap.instStar
Dense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SetLike.coe
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
Submodule.setLike
LinearPMap.domain
β€”LinearPMap.isSelfAdjoint_def
Submodule.eq_top_iff'
RingHomCompTriple.ids
Algebra.to_smulCommClass
LinearPMap.mem_adjoint_domain_iff
Continuous.comp
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
ContinuousLinearMap.cont
continuous_const
isClosed πŸ“–mathematicalIsSelfAdjoint
LinearPMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
LinearPMap.instStar
LinearPMap.IsClosed
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”LinearPMap.isSelfAdjoint_def
LinearPMap.adjoint_isClosed
dense_domain

LinearPMap

Definitions

NameCategoryTheorems
IsFormalAdjoint πŸ“–MathDef
1 mathmath: adjoint_isFormalAdjoint
adjoint πŸ“–CompOp
11 mathmath: adjoint_isFormalAdjoint, graph_adjoint_toLinearPMap_eq_adjoint, adjoint_apply_of_not_dense, adjoint_isClosed, ContinuousLinearMap.toPMap_adjoint_eq_adjoint_toPMap_of_dense, IsFormalAdjoint.le_adjoint, isSelfAdjoint_def, mem_adjoint_domain_iff, mem_adjoint_domain_of_exists, adjoint_apply_of_dense, adjoint_graph_eq_graph_adjoint
adjointAux πŸ“–CompOp
3 mathmath: adjointAux_unique, adjointAux_inner, adjoint_apply_of_dense
adjointDomain πŸ“–CompOp
4 mathmath: adjointDomainMkCLM_apply, adjointDomainMkCLMExtend_apply, adjointAux_inner, adjoint_apply_of_dense
adjointDomainMkCLM πŸ“–CompOp
1 mathmath: adjointDomainMkCLM_apply
adjointDomainMkCLMExtend πŸ“–CompOp
1 mathmath: adjointDomainMkCLMExtend_apply
instStar πŸ“–CompOp
1 mathmath: isSelfAdjoint_def
Β«term_†» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjointAux_inner πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
Inner.inner
InnerProductSpace.toInner
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SetLike.instMembership
adjointDomain
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
adjointAux
toFun'
β€”RingHomInvPair.instStarRingEnd
RingHomIsometric.ids
Algebra.to_smulCommClass
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
InnerProductSpace.toDual_symm_apply
adjointDomainMkCLMExtend_apply
adjointAux_unique πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
Inner.inner
InnerProductSpace.toInner
SetLike.instMembership
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
adjointDomain
toFun'
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
adjointAux
β€”Dense.eq_of_inner_left
adjointAux_inner
adjointDomainMkCLMExtend_apply πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
DFunLike.coe
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
adjointDomainMkCLMExtend
SetLike.instMembership
Inner.inner
InnerProductSpace.toInner
adjointDomain
toFun'
β€”ContinuousLinearMap.extend_eq
RCLike.toCompleteSpace
Dense.denseRange_val
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_subtype_val
adjointDomainMkCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
domain
instTopologicalSpaceSubtype
SeminormedAddCommGroup.toPseudoMetricSpace
Submodule.addCommMonoid
Submodule.module
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
adjointDomainMkCLM
Inner.inner
InnerProductSpace.toInner
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
adjointDomain
toFun'
β€”β€”
adjoint_apply_eq πŸ“–β€”Dense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
Inner.inner
InnerProductSpace.toInner
SetLike.instMembership
adjoint
toFun'
β€”β€”adjointAux_unique
adjoint_apply_of_dense
adjoint_apply_of_dense πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
toFun'
adjoint
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SetLike.instMembership
adjointDomain
Submodule.addCommMonoid
Submodule.module
LinearMap.instFunLike
adjointAux
β€”β€”
adjoint_apply_of_not_dense πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
toFun'
adjoint
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
adjoint_graph_eq_graph_adjoint πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
graph
adjoint
Submodule.adjoint
β€”Submodule.ext
IsFormalAdjoint.symm
adjoint_isFormalAdjoint
sub_self
mem_adjoint_domain_of_exists
inner_conj_symm
Dense.eq_of_inner_right
adjoint_isClosed πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
IsClosed
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
adjoint
β€”IsClosed.eq_1
adjoint_graph_eq_graph_adjoint
fact_one_le_two_ennreal
Submodule.adjoint.eq_1
LinearEquiv.coe_coe
RingHomInvPair.ids
LinearEquiv.image_eq_preimage_symm
IsClosed.preimage
WithLp.prod_continuous_toLp
Submodule.isClosed_orthogonal
adjoint_isFormalAdjoint πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
IsFormalAdjoint
adjoint
β€”adjointAux_inner
adjoint_apply_of_dense
graph_adjoint_toLinearPMap_eq_adjoint πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
domain
Submodule.toLinearPMap
Submodule.adjoint
graph
adjoint
β€”eq_of_eq_graph
adjoint_graph_eq_graph_adjoint
Submodule.toLinearPMap_graph_eq
Dense.eq_zero_of_inner_right
inner_zero_right
zero_sub
isSelfAdjoint_def πŸ“–mathematicalβ€”IsSelfAdjoint
LinearPMap
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
instStar
adjoint
β€”β€”
mem_adjoint_domain_iff πŸ“–mathematicalβ€”Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
domain
adjoint
Continuous
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
Submodule.addCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
Submodule.module
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
LinearMap.instFunLike
LinearMap.comp
SeminormedAddCommGroup.toAddCommGroup
RingHomCompTriple.ids
CommSemiring.toSemiring
Semifield.toCommSemiring
starRingEnd
RCLike.toStarRing
LinearMap.addCommMonoid
LinearMap.module
Algebra.to_smulCommClass
Algebra.id
innerβ‚›β‚—
toFun
β€”β€”
mem_adjoint_domain_of_exists πŸ“–mathematicalInner.inner
InnerProductSpace.toInner
NormedAddCommGroup.toSeminormedAddCommGroup
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
domain
toFun'
adjointβ€”RingHomCompTriple.ids
Algebra.to_smulCommClass
mem_adjoint_domain_iff
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
ContinuousLinearMap.continuous

LinearPMap.IsFormalAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
le_adjoint πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.setLike
LinearPMap.domain
LinearPMap.IsFormalAdjoint
LinearPMap
LinearPMap.le
LinearPMap.adjoint
β€”LinearPMap.mem_adjoint_domain_of_exists
symm
LinearPMap.adjoint_apply_eq

Submodule

Definitions

NameCategoryTheorems
adjoint πŸ“–CompOp
3 mathmath: LinearPMap.graph_adjoint_toLinearPMap_eq_adjoint, mem_adjoint_iff, LinearPMap.adjoint_graph_eq_graph_adjoint

Theorems

NameKindAssumesProvesValidatesDepends On
mem_adjoint_iff πŸ“–mathematicalβ€”Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
Prod.instAddCommMonoid
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Prod.instModule
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
setLike
adjoint
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
Inner.inner
InnerProductSpace.toInner
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
WithLp.ofLp_fst
WithLp.ofLp_snd
inner_neg_left

---

← Back to Index