Documentation Verification Report

Minimal

πŸ“ Source: Mathlib/Analysis/InnerProductSpace/Projection/Minimal.lean

Statistics

MetricCount
Definitions0
Theoremsexists_norm_eq_iInf_of_complete_subspace, norm_eq_iInf_iff_inner_eq_zero, norm_eq_iInf_iff_real_inner_eq_zero, exists_norm_eq_iInf_of_complete_convex, norm_eq_iInf_iff_real_inner_le_zero
5
Total5

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
exists_norm_eq_iInf_of_complete_subspace πŸ“–mathematicalIsComplete
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SetLike.coe
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
setLike
SetLike.instMembership
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
iInf
Real
Set.Elem
Real.instInfSet
Set
Set.instMembership
β€”Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
exists_norm_eq_iInf_of_complete_convex
zero_mem
convex
norm_eq_iInf_iff_inner_eq_zero πŸ“–mathematicalSubmodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
setLike
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
iInf
Real
Real.instInfSet
Inner.inner
InnerProductSpace.toInner
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
β€”Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
norm_eq_iInf_iff_real_inner_eq_zero
RCLike.ext
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
AddMonoidHom.map_zero
smul_mem
inner_smul_right
neg_mul
map_neg
RCLike.mul_re
RCLike.I_re
MulZeroClass.zero_mul
RCLike.I_im'
zero_sub
neg_neg
real_inner_eq_re_inner
RCLike.zero_re
norm_eq_iInf_iff_real_inner_eq_zero πŸ“–mathematicalSubmodule
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SetLike.instMembership
setLike
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
iInf
Set.Elem
SetLike.coe
Real.instInfSet
Set
Set.instMembership
Inner.inner
InnerProductSpace.toInner
Real.instZero
β€”norm_eq_iInf_iff_real_inner_le_zero
convex
add_mem
sub_eq_add_neg
add_neg_cancel_right
neg_mem
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
inner_neg_right
Mathlib.Tactic.Linarith.sub_neg_of_lt
le_antisymm
sub_mem
le_of_eq

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_norm_eq_iInf_of_complete_convex πŸ“–mathematicalSet.Nonempty
IsComplete
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Convex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Set
Set.instMembership
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
iInf
Set.Elem
Real.instInfSet
β€”le_ciInf
Set.Nonempty.to_subtype
norm_nonneg
ciInf_le
Set.forall_mem_range
lt_add_of_le_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_rfl
Nat.one_div_pos_of_nat
Real.instIsStrictOrderedRing
exists_lt_of_ciInf_lt
tendsto_const_nhds
add_zero
Filter.Tendsto.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_one_div_add_atTop_nhds_zero_nat
RCLike.charZero_rclike
NNRat.instContinuousSMulOfIsScalarTowerOfRat
IsScalarTower.nnrat
Rat.instCharZero
NNRat.instContinuousSMulRatReal
tendsto_of_tendsto_of_tendsto_of_le_of_le
instOrderTopologyReal
le_of_lt
cauchySeq_iff_le_tendsto_0
Nat.instAtLeastTwoHAddOfNat
Real.sqrt_nonneg
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_mul
abs_of_nonneg
zero_le_two
Real.instZeroLEOneClass
Nat.abs_ofNat
Real.instIsOrderedRing
smul_add
norm_smul
NormedSpace.toNormSMulClass
Real.norm_ofNat
smul_sub
smul_smul
mul_one_div_cancel
two_ne_zero
CharZero.NeZero.two
one_add_one_eq_two
add_smul
one_smul
sub_sub_sub_cancel_left
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
zero_add
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.term_neg
neg_zero
parallelogram_law_with_norm
Subtype.mem
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
add_halves
le_imp_le_of_le_of_le
le_refl
add_le_add_right
Nat.one_div_le_one_div
dist_eq_norm
nonneg_le_nonneg_of_sq_le_sq
IsOrderedRing.toMulPosMono
Real.mul_self_sqrt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
mul_nonneg
IsOrderedRing.toPosMulMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
div_pos
Nat.cast_one
Nat.cast_nonneg'
mul_pos
add_sub_cancel_left
sub_le_sub_left
mul_le_mul
mul_le_mul_of_nonneg_left
sub_le_sub_right
add_le_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Continuous.tendsto'
Continuous.sqrt
Continuous.fun_add
Continuous.comp'
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
Continuous.fst
continuous_id'
Continuous.snd
Continuous.prodMk
continuous_const
MulZeroClass.mul_zero
Real.sqrt_zero
Filter.Tendsto.comp
cauchySeq_tendsto_of_isComplete
Continuous.norm
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.continuousAt
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
norm_eq_iInf_iff_real_inner_le_zero πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Set
Set.instMembership
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
iInf
Set.Elem
Real.instInfSet
Real.instLE
Inner.inner
InnerProductSpace.toInner
Real.instZero
β€”ciInf_le
norm_nonneg
Nat.instAtLeastTwoHAddOfNat
sq
mul_self_le_mul_self
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
le_of_lt
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_sub_cancel
smul_sub
sub_smul
one_smul
sub_eq_add_neg
add_left_comm
neg_add_rev
add_comm
add_assoc
norm_sub_sq
inner_smul_right
norm_smul
NormedSpace.toNormSMulClass
abs_of_pos
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_pf_add_gt
le_of_sub_nonneg
nonneg_of_mul_nonneg_right
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
le_add_iff_nonneg_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
lt_of_le_of_ne
sq_nonneg
AddGroup.existsAddOfLE
mul_le_mul_of_nonneg_right
min_le_right
div_mul_cancelβ‚€
lt_min
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
not_le
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
le_antisymm
le_ciInf
nonneg_le_nonneg_of_sq_le_sq
Mathlib.Tactic.Linarith.mul_nonpos
le_add_of_nonneg_right
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Tactic.Abel.zero_termg

---

← Back to Index