Documentation Verification Report

Semisimple

📁 Source: Mathlib/Analysis/InnerProductSpace/Semisimple.lean

Statistics

MetricCount
Definitions0
TheoremsisFinitelySemisimple, orthogonalComplement_mem_invtSubmodule
2
Total2

LinearMap.IsSymmetric

Theorems

NameKindAssumesProvesValidatesDepends On
isFinitelySemisimple 📖mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Module.End.IsFinitelySemisimple
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.isFinitelySemisimple_iff
inf_le_right
Module.End.invtSubmodule.inf_mem
orthogonalComplement_mem_invtSubmodule
Submodule.inf_orthogonal_eq_bot
inf_of_le_left
Submodule.finiteDimensional_of_le
Submodule.sup_orthogonal_of_hasOrthogonalProjection
Submodule.HasOrthogonalProjection.ofCompleteSpace
complete_of_proper
FiniteDimensional.RCLike.properSpace_submodule
sup_inf_assoc_of_le
Submodule.instIsModularLattice
top_inf_eq
orthogonalComplement_mem_invtSubmodule 📖mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Sublattice
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Submodule.completeLattice
SetLike.instMembership
Sublattice.instSetLike
Module.End.invtSubmodule
Submodule.orthogonal

---

← Back to Index