Documentation Verification Report

Symmetric

πŸ“ Source: Mathlib/Analysis/InnerProductSpace/Symmetric.lean

Statistics

MetricCount
DefinitionsIsSymmetric, IsSymmetricProjection
2
TheoremsisSymmetric_iff_orthogonal_range, isSymmetricProjection_rankOne_self, isSymmetric_rankOne_self, isSymmetric_symm_iff, isSymmetric_iff_isOrtho_range_ker, isSymmetric_iff_orthogonal_range, add, apply_clm, coe_reApplyInnerSelf_apply, coe_re_inner_apply_self, coe_re_inner_self_apply, conj_inner_sym, continuous, id, im_inner_apply_self, im_inner_self_apply, inner_map_polarization, inner_map_self_eq_zero, intCast, isSymmetric_smul_iff, mul_of_commute, natCast, orthogonal_range, pow, restrictScalars, restrict_invariant, smul, sub, toLinearMap_symm, zero, ext, ext_iff, isIdempotentElem, isSymmetric, sub_of_range_le_range, isSymmetricProjection_iff, isSymmetric_iff_inner_map_self_real, isSymmetric_iff_sesqForm, isSymmetric_linearIsometryEquiv_conj_iff, isSymmetric_sum, ker_le_ker_of_range, projection_isSymmetricProjection_iff, projection_isSymmetricProjection_of_isOrtho, projection_isSymmetric_iff
44
Total46

ContinuousLinearMap.IsIdempotentElem

Theorems

NameKindAssumesProvesValidatesDepends On
isSymmetric_iff_orthogonal_range πŸ“–mathematicalIsIdempotentElem
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
LinearMap.IsSymmetric
Submodule.orthogonal
LinearMap.range
RingHomSurjective.ids
LinearMap.ker
β€”LinearMap.IsIdempotentElem.isSymmetric_iff_orthogonal_range

InnerProductSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isSymmetricProjection_rankOne_self πŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
Real
Real.instOne
LinearMap.IsSymmetricProjection
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
toNormedSpace
DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
starRingEnd
RCLike.toStarRing
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.funLike
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
DenselyNormedField.toNontriviallyNormedField
RingHomIsometric.ids
ContinuousLinearMap.smulCommClass
ContinuousLinearMap.continuousConstSMul
rankOne
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.topologicalAddGroup
RingHomIsometric.ids
ContinuousLinearMap.smulCommClass
ContinuousLinearMap.continuousConstSMul
ContinuousLinearMap.IsIdempotentElem.toLinearMap
isIdempotentElem_rankOne_self
isSymmetric_rankOne_self
isSymmetric_rankOne_self πŸ“–mathematicalβ€”LinearMap.IsSymmetric
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
toNormedSpace
DFunLike.coe
ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
starRingEnd
RCLike.toStarRing
ContinuousLinearMap.topologicalSpace
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
Field.toCommRing
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IsBoundedSMul.toUniformContinuousConstSMul
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.funLike
ContinuousLinearMap.addCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
ContinuousLinearMap.topologicalAddGroup
ContinuousLinearMap.toSeminormedAddCommGroup
DenselyNormedField.toNontriviallyNormedField
RingHomIsometric.ids
ContinuousLinearMap.smulCommClass
ContinuousLinearMap.continuousConstSMul
rankOne
β€”SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
ContinuousLinearMap.topologicalAddGroup
RingHomIsometric.ids
ContinuousLinearMap.smulCommClass
ContinuousLinearMap.continuousConstSMul
inner_smul_left
inner_conj_symm
mul_comm
inner_smul_right

LinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isSymmetric_symm_iff πŸ“–mathematicalβ€”LinearMap.IsSymmetric
toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
symm
β€”RingHomInvPair.ids
LinearMap.IsSymmetric.toLinearMap_symm

LinearMap

Definitions

NameCategoryTheorems
IsSymmetric πŸ“–MathDef
27 mathmath: ContinuousLinearMap.isSelfAdjoint_iff_isSymmetric, IsSelfAdjoint.isSymmetric, ContinuousLinearMap.isPositive_def, isSymmetric_adjoint_mul_self, ContinuousLinearMap.IsPositive.isSymmetric, IsSymmetricProjection.isSymmetric, isSymmetric_linearIsometryEquiv_conj_iff, ContinuousLinearMap.IsIdempotentElem.isSymmetric_iff_orthogonal_range, Submodule.starProjection_isSymmetric, IsIdempotentElem.isSymmetric_iff_isOrtho_range_ker, IsSymmetric.natCast, IsIdempotentElem.isSymmetric_iff_orthogonal_range, Matrix.isHermitian_iff_isSymmetric, IsPositive.isSymmetric, InnerProductSpace.isSymmetric_rankOne_self, isSymmetricProjection_iff, LinearEquiv.isSymmetric_symm_iff, IsSymmetric.zero, ContinuousLinearMap.isPositive_iff, IsSymmetric.id, isSymmetric_iff_isSelfAdjoint, isSymmetric_iff_sesqForm, isPositive_iff, isSymmetric_iff_inner_map_self_real, Submodule.IsCompl.projection_isSymmetric_iff, IsIdempotentElem.isPositive_iff_isSymmetric, IsSymmetric.intCast
IsSymmetricProjection πŸ“–CompData
10 mathmath: Submodule.IsCompl.projection_isSymmetricProjection_iff, ContinuousLinearMap.isStarProjection_iff_isSymmetricProjection, InnerProductSpace.isSymmetricProjection_rankOne_self, Submodule.IsCompl.projection_isSymmetricProjection_of_isOrtho, Submodule.isSymmetricProjection_starProjection, isSymmetricProjection_iff, isSymmetricProjection_iff_eq_coe_starProjection, isSymmetricProjection_iff_eq_coe_starProjection_range, ContinuousLinearMap.IsStarProjection.isSymmetricProjection, isStarProjection_iff_isSymmetricProjection

Theorems

NameKindAssumesProvesValidatesDepends On
isSymmetricProjection_iff πŸ“–mathematicalβ€”IsSymmetricProjection
IsIdempotentElem
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
IsSymmetric
β€”β€”
isSymmetric_iff_inner_map_self_real πŸ“–mathematicalβ€”IsSymmetric
Complex
Complex.instRCLike
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
Inner.inner
InnerProductSpace.toInner
LinearMap
Complex.instSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Complex.instNormedField
InnerProductSpace.toNormedSpace
instFunLike
β€”IsSymmetric.conj_inner_sym
inner_conj_symm
Nat.instAtLeastTwoHAddOfNat
inner_map_polarization
star_divβ‚€
star_sub
StarAddMonoid.star_add
StarMul.star_mul
Complex.conj_I
inner_map_polarization'
map_add
SemilinearMapClass.toAddHomClass
semilinearMapClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
map_smul
SemilinearMapClass.toMulActionSemiHomClass
mul_neg
sub_neg_eq_add
map_ofNat
RingHom.instRingHomClass
Mathlib.Meta.NormNum.isNat_eq_false
Complex.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.neg_congr
isSymmetric_iff_sesqForm πŸ“–mathematicalβ€”IsSymmetric
IsSelfAdjoint
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
starRingEnd
RCLike.toStarRing
flip
CommSemiring.toSemiring
Algebra.to_smulCommClass
Algebra.id
RingHom.id
Semiring.toNonAssocSemiring
innerβ‚›β‚—
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instFunLike
β€”Algebra.to_smulCommClass
isSymmetric_linearIsometryEquiv_conj_iff πŸ“–mathematicalβ€”IsSymmetric
comp
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
RingHom.id
Semiring.toNonAssocSemiring
RingHomCompTriple.ids
LinearEquiv.toLinearMap
RingHomInvPair.ids
LinearIsometryEquiv.toLinearEquiv
LinearIsometryEquiv.symm
β€”RingHomInvPair.ids
RingHomCompTriple.ids
LinearIsometryEquiv.symm_apply_apply
LinearIsometryEquiv.inner_map_eq_flip
isSymmetric_sum πŸ“–mathematicalIsSymmetricFinset.sum
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
addCommMonoid
β€”coe_sum
Finset.sum_apply
sum_inner
inner_sum
Finset.sum_congr
ker_le_ker_of_range πŸ“–mathematicalIsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
kerβ€”RingHomSurjective.ids
mem_ker
inner_self_eq_zero
inner_zero_right

LinearMap.IsIdempotentElem

Theorems

NameKindAssumesProvesValidatesDepends On
isSymmetric_iff_isOrtho_range_ker πŸ“–mathematicalIsIdempotentElem
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
LinearMap.IsSymmetric
Submodule.IsOrtho
LinearMap.range
RingHomSurjective.ids
LinearMap.ker
β€”RingHomSurjective.ids
LinearMap.IsProj.isCompl
isProj_range
Submodule.IsCompl.projection_isSymmetric_iff
isCompl
eq_isCompl_projection
isSymmetric_iff_orthogonal_range πŸ“–mathematicalIsIdempotentElem
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
LinearMap.IsSymmetric
Submodule.orthogonal
LinearMap.range
RingHomSurjective.ids
LinearMap.ker
β€”RingHomSurjective.ids
LinearMap.IsSymmetric.orthogonal_range
Submodule.isOrtho_orthogonal_right
isSymmetric_iff_isOrtho_range_ker

LinearMap.IsSymmetric

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalLinearMap.IsSymmetricLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instAdd
β€”LinearMap.add_apply
inner_add_left
inner_add_right
apply_clm πŸ“–mathematicalLinearMap.IsSymmetric
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Inner.inner
InnerProductSpace.toInner
DFunLike.coe
ContinuousLinearMap
ContinuousLinearMap.funLike
β€”β€”
coe_reApplyInnerSelf_apply πŸ“–mathematicalLinearMap.IsSymmetric
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
RCLike.ofReal
ContinuousLinearMap.reApplyInnerSelf
Inner.inner
InnerProductSpace.toInner
DFunLike.coe
ContinuousLinearMap
ContinuousLinearMap.funLike
β€”RCLike.conj_eq_iff_real
conj_inner_sym
RCLike.ofReal_re
coe_re_inner_apply_self πŸ“–mathematicalLinearMap.IsSymmetricRCLike.ofReal
DFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.re
Inner.inner
InnerProductSpace.toInner
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
β€”RCLike.conj_eq_iff_re
conj_inner_sym
coe_re_inner_self_apply πŸ“–mathematicalLinearMap.IsSymmetricRCLike.ofReal
DFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.re
Inner.inner
InnerProductSpace.toInner
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
β€”coe_re_inner_apply_self
conj_inner_sym πŸ“–mathematicalLinearMap.IsSymmetricDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.instFunLike
starRingEnd
RCLike.toStarRing
Inner.inner
InnerProductSpace.toInner
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
β€”inner_conj_symm
continuous πŸ“–mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
β€”LinearMap.continuous_of_seq_closed_graph
sub_eq_zero
inner_self_eq_zero
LinearMap.map_sub
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.inner
Filter.Tendsto.sub_const
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
tendsto_const_nhds
inner_zero_left
sub_self
id πŸ“–mathematicalβ€”LinearMap.IsSymmetric
LinearMap.id
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
β€”β€”
im_inner_apply_self πŸ“–mathematicalLinearMap.IsSymmetricDFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.im
Inner.inner
InnerProductSpace.toInner
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
Real.instZero
β€”RCLike.conj_eq_iff_im
conj_inner_sym
im_inner_self_apply πŸ“–mathematicalLinearMap.IsSymmetricDFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.im
Inner.inner
InnerProductSpace.toInner
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
Real.instZero
β€”im_inner_apply_self
inner_map_polarization πŸ“–mathematicalLinearMap.IsSymmetricInner.inner
InnerProductSpace.toInner
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
Distrib.toMul
RCLike.I
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedCommRing.toNormedRing
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
RCLike.I_mul_I_ax
MulZeroClass.zero_mul
sub_zero
add_zero
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
inner_add_left
inner_add_right
inner_sub_left
inner_sub_right
inner_conj_symm
RCLike.re_add_im
MulZeroClass.mul_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
RCLike.ofReal_re
RCLike.conj_eq_iff_re
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
map_smul
SemilinearMapClass.toMulActionSemiHomClass
inner_smul_left
inner_smul_right
RCLike.conj_I
mul_add
Distrib.leftDistribClass
mul_sub
sub_sub
mul_neg
neg_neg
one_mul
neg_one_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_congr
inner_map_self_eq_zero πŸ“–mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Inner.inner
InnerProductSpace.toInner
DFunLike.coe
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
LinearMap.instZero
β€”inner_self_eq_zero
Nat.instAtLeastTwoHAddOfNat
inner_map_polarization
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
inner_zero_left
AddTorsor.nonempty
intCast πŸ“–mathematicalβ€”LinearMap.IsSymmetric
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Module.End.instRing
β€”Int.cast_smul_eq_zsmul
inner_smul_left
map_intCast
RingHom.instRingHomClass
inner_smul_right
isSymmetric_smul_iff πŸ“–mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
IsSelfAdjoint
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
StarRing.toStarAddMonoid
RCLike.toStarRing
β€”smulCommClass_self
inner_smul_left
inner_smul_right
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
ext_iff_inner_left
inner_zero_right
smul
mul_of_commute πŸ“–β€”LinearMap.IsSymmetric
Commute
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
β€”β€”Module.End.mul_apply
natCast πŸ“–mathematicalβ€”LinearMap.IsSymmetric
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Module.End.instRing
β€”Nat.cast_smul_eq_nsmul
inner_smul_left
map_natCast
RingHom.instRingHomClass
inner_smul_right
orthogonal_range πŸ“–mathematicalLinearMap.IsSymmetric
NormedAddCommGroup.toSeminormedAddCommGroup
Submodule.orthogonal
LinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap.ker
β€”Submodule.ext
RingHomSurjective.ids
inner_zero_right
ext_inner_left
pow πŸ“–mathematicalLinearMap.IsSymmetricLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Monoid.toNatPow
Module.End.instMonoid
β€”Nat.le_induction
pow_zero
RingHomCompTriple.ids
Module.End.iterate_succ
Module.End.mul_eq_comp
mul_of_commute
Commute.pow_left
restrictScalars πŸ“–mathematicalLinearMap.IsSymmetricReal
Real.instRCLike
InnerProductSpace.rclikeToReal
LinearMap.restrictScalars
Real.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
LinearMap.IsScalarTower.compatibleSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedAlgebra.toAlgebra
RCLike.toNormedAlgebra
RestrictScalars.isScalarTower
β€”LinearMap.IsScalarTower.compatibleSMul
RestrictScalars.isScalarTower
LinearMap.coe_restrictScalars
restrict_invariant πŸ“–mathematicalLinearMap.IsSymmetric
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
SetLike.instMembership
Submodule.setLike
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
LinearMap.instFunLike
Submodule.seminormedAddCommGroup
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
Submodule.innerProductSpace
LinearMap.restrict
β€”β€”
smul πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.instFunLike
starRingEnd
RCLike.toStarRing
LinearMap.IsSymmetric
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.id
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instSMul
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
β€”smulCommClass_self
inner_smul_left
inner_smul_right
sub πŸ“–mathematicalLinearMap.IsSymmetricLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instSub
β€”LinearMap.sub_apply
inner_sub_left
inner_sub_right
toLinearMap_symm πŸ“–mathematicalLinearMap.IsSymmetric
LinearEquiv.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearEquiv.symmβ€”RingHomInvPair.ids
LinearEquiv.apply_symm_apply
zero πŸ“–mathematicalβ€”LinearMap.IsSymmetric
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
LinearMap.instZero
β€”inner_zero_left
inner_zero_right

LinearMap.IsSymmetricProjection

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”LinearMap.IsSymmetricProjection
NormedAddCommGroup.toSeminormedAddCommGroup
LinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
β€”β€”RingHomSurjective.ids
ext_iff
ext_iff πŸ“–mathematicalLinearMap.IsSymmetricProjection
NormedAddCommGroup.toSeminormedAddCommGroup
LinearMap.range
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
β€”RingHomSurjective.ids
LinearMap.IsIdempotentElem.ext_iff
isIdempotentElem
LinearMap.IsIdempotentElem.isSymmetric_iff_orthogonal_range
isSymmetric
isIdempotentElem πŸ“–mathematicalLinearMap.IsSymmetricProjectionIsIdempotentElem
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Module.End.instMul
β€”β€”
isSymmetric πŸ“–mathematicalLinearMap.IsSymmetricProjectionLinearMap.IsSymmetricβ€”β€”
sub_of_range_le_range πŸ“–mathematicalLinearMap.IsSymmetricProjection
NormedAddCommGroup.toSeminormedAddCommGroup
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
LinearMap.range
RingHom.id
Semiring.toNonAssocSemiring
RingHomSurjective.ids
LinearMap
LinearMap.instSub
SeminormedAddCommGroup.toAddCommGroup
β€”RingHomSurjective.ids
IsIdempotentElem.sub
isIdempotentElem
LinearMap.ext
ext_inner_left
isSymmetric
RingHomCompTriple.ids
LinearMap.IsIdempotentElem.comp_eq_right_iff
LinearMap.IsSymmetric.sub

Submodule.IsCompl

Theorems

NameKindAssumesProvesValidatesDepends On
projection_isSymmetricProjection_iff πŸ“–mathematicalIsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
LinearMap.IsSymmetricProjection
projection
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedAddCommGroup.toAddCommGroup
Submodule.IsOrtho
β€”projection_isIdempotentElem
projection_isSymmetric_iff
projection_isSymmetricProjection_of_isOrtho πŸ“–mathematicalIsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
Submodule.IsOrtho
LinearMap.IsSymmetricProjection
projection
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedAddCommGroup.toAddCommGroup
β€”projection_isSymmetricProjection_iff
projection_isSymmetric_iff πŸ“–mathematicalIsCompl
Submodule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
InnerProductSpace.toNormedSpace
Submodule.instPartialOrder
CompleteLattice.toBoundedOrder
Submodule.completeLattice
LinearMap.IsSymmetric
projection
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedAddCommGroup.toAddCommGroup
Submodule.IsOrtho
β€”projection.eq_1
Submodule.linearProjOfIsCompl_apply_left
Submodule.subtype_apply
RingHomCompTriple.ids
LinearMap.comp_apply
Submodule.linearProjOfIsCompl_apply_right
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
inner_zero_left
IsCompl.symm
projection_add_projection_eq_self
inner_add_right
Submodule.isOrtho_iff_inner_eq
add_zero
inner_add_left
AddLeftCancelSemigroup.toIsLeftCancelAdd

---

← Back to Index