Documentation Verification Report

AbsConvexOpen

πŸ“ Source: Mathlib/Analysis/LocallyConvex/AbsConvexOpen.lean

Statistics

MetricCount
DefinitionsAbsConvexOpenSets, instCoeOut, gaugeSeminormFamily
3
Theoremscoe_balanced, coe_convex, coe_isOpen, coe_nhds, coe_zero_mem, instNonempty, toPolynormableSpace, gaugeSeminormFamily_ball, with_gaugeSeminormFamily
9
Total12

AbsConvexOpenSets

Definitions

NameCategoryTheorems
instCoeOut πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_balanced πŸ“–mathematicalβ€”Balanced
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsOpen
AbsConvex
β€”β€”
coe_convex πŸ“–mathematicalβ€”Convex
Ring.toSemiring
SeminormedRing.toRing
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsOpen
AbsConvex
β€”β€”
coe_isOpen πŸ“–mathematicalβ€”IsOpen
Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AbsConvex
β€”β€”
coe_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Set.instMembership
IsOpen
AbsConvex
β€”IsOpen.mem_nhds
coe_isOpen
coe_zero_mem
coe_zero_mem πŸ“–mathematicalβ€”Set
Set.instMembership
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsOpen
AbsConvex
β€”β€”
instNonempty πŸ“–mathematicalβ€”AbsConvexOpenSetsβ€”exists_true_iff_nonempty
Set.mem_univ
isOpen_univ
balanced_univ
convex_univ

LocallyConvexSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toPolynormableSpace πŸ“–mathematicalβ€”PolynormableSpace
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
β€”WithSeminorms.toPolynormableSpace
with_gaugeSeminormFamily

(root)

Definitions

NameCategoryTheorems
AbsConvexOpenSets πŸ“–CompOp
2 mathmath: with_gaugeSeminormFamily, AbsConvexOpenSets.instNonempty
gaugeSeminormFamily πŸ“–CompOp
2 mathmath: with_gaugeSeminormFamily, gaugeSeminormFamily_ball

Theorems

NameKindAssumesProvesValidatesDepends On
gaugeSeminormFamily_ball πŸ“–mathematicalβ€”Seminorm.ball
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
gaugeSeminormFamily
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Real
Real.instOne
Set
Set.instMembership
AddCommMonoid.toAddMonoid
IsOpen
AbsConvex
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RCLike.toPartialOrder
β€”Seminorm.ball_zero_eq
gauge_lt_one_eq_self_of_isOpen
Convex.lift
RCLike.toZeroLEOneClass
PosSMulMono.toSMulPosMono
Real.instIsOrderedRing
RCLike.toIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
instIsOrderedModule
RCLike.toStarOrderedRing
RCLike.instStarModuleReal
IsScalarTower.right
Algebra.to_smulCommClass
AbsConvexOpenSets.coe_convex
AbsConvexOpenSets.coe_zero_mem
AbsConvexOpenSets.coe_isOpen
with_gaugeSeminormFamily πŸ“–mathematicalβ€”WithSeminorms
AbsConvexOpenSets
AddCommGroup.toAddCommMonoid
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
RCLike.toPartialOrder
gaugeSeminormFamily
β€”SeminormFamily.withSeminorms_of_hasBasis
Filter.HasBasis.to_hasBasis
nhds_hasBasis_absConvex_open
RCLike.toZeroLEOneClass
gaugeSeminormFamily_ball
SeminormFamily.basisSets_singleton_mem
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Eq.subset
Set.instReflSubset
SeminormFamily.basisSets_iff
Seminorm.ball_finset_sup_eq_iInter
Set.mem_iInterβ‚‚
sub_self
map_zero
AddGroupSeminormClass.toZeroHomClass
SeminormClass.toAddGroupSeminormClass
Seminorm.instSeminormClass
isOpen_biInter_finset
norm_algebraMap'
NormedDivisionRing.to_normOneClass
abs_of_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
LT.lt.ne'
Seminorm.smul_ball_zero
IsOpen.smulβ‚€
ContinuousSMul.continuousConstSMul
AbsConvexOpenSets.coe_isOpen
balanced_iInterβ‚‚
Seminorm.balanced_ball_zero
convex_iInterβ‚‚
convex_of_nonneg_surjective_algebraMap
instFaithfulSMul_1
RCLike.nonneg_iff_exists_ofReal
Seminorm.convex_ball

---

← Back to Index