Documentation Verification Report

Montel

πŸ“ Source: Mathlib/Analysis/LocallyConvex/Montel.lean

Statistics

MetricCount
DefinitionstoCompactConvergenceCLM, MontelSpace
2
TheoremstoCompactConvergenceCLM_apply, toCompactConvergenceCLM_symm_apply, finiteDimensional_of_normedSpace, heine_borel, isCompact_of_isClosed_of_isVonNBounded
5
Total7

ContinuousLinearEquiv

Definitions

NameCategoryTheorems
toCompactConvergenceCLM πŸ“–CompOp
2 mathmath: toCompactConvergenceCLM_symm_apply, toCompactConvergenceCLM_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toCompactConvergenceCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
CompactConvergenceCLM
UniformSpace.toTopologicalSpace
UniformConvergenceCLM.instFunLike
setOf
Set
IsCompact
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
ContinuousLinearMap
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.topologicalSpace
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
UniformConvergenceCLM.instTopologicalSpace
UniformConvergenceCLM.instAddCommGroup
ContinuousLinearMap.module
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousSMul.continuousConstSMul
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
UniformConvergenceCLM.instModule
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
EquivLike.toFunLike
equivLike
toCompactConvergenceCLM
ContinuousLinearMap.funLike
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
toCompactConvergenceCLM_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
UniformSpace.toTopologicalSpace
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
CompactConvergenceCLM
UniformConvergenceCLM.instTopologicalSpace
setOf
Set
IsCompact
UniformConvergenceCLM.instAddCommGroup
ContinuousLinearMap.topologicalSpace
ContinuousLinearMap.addCommMonoid
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
UniformConvergenceCLM.instModule
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
ContinuousSMul.continuousConstSMul
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ContinuousLinearMap.module
EquivLike.toFunLike
equivLike
symm
toCompactConvergenceCLM
UniformConvergenceCLM.instFunLike
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul

MontelSpace

Theorems

NameKindAssumesProvesValidatesDepends On
finiteDimensional_of_normedSpace πŸ“–mathematicalβ€”FiniteDimensional
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
β€”FiniteDimensional.of_isCompact_closedBallβ‚€
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
isCompact_of_isClosed_of_isVonNBounded
Metric.isClosed_closedBall
NormedSpace.isVonNBounded_closedBall
heine_borel πŸ“–mathematicalBornology.IsVonNBoundedIsCompactβ€”β€”
isCompact_of_isClosed_of_isVonNBounded πŸ“–mathematicalBornology.IsVonNBoundedIsCompactβ€”heine_borel

(root)

Definitions

NameCategoryTheorems
MontelSpace πŸ“–CompDataβ€”

---

← Back to Index