Documentation Verification Report

SeparatingDual

πŸ“ Source: Mathlib/Analysis/LocallyConvex/SeparatingDual.lean

Statistics

MetricCount
Definitions0
TheoremsinstContinuousLinearMap, conjContinuousAlgEquiv_ext_iff, dualMap_surjective_iff, exists_continuousLinearEquiv_apply_eq, exists_eq_one, exists_eq_one_ne_zero_of_ne_zero_pair, exists_ne_zero, exists_ne_zero', exists_separating_of_ne, instNontrivialContinuousLinearMapIdOfContinuousSMul, t1Space, t2Space, instSeparatingDual, instSeparatingDualRealOfIsTopologicalAddGroupOfContinuousSMulOfLocallyConvexSpaceOfT1Space, separatingDual_def, separatingDual_iff_injective
16
Total16

Algebra.IsCentral

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousLinearMap πŸ“–mathematicalβ€”Algebra.IsCentral
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.semiring
IsTopologicalAddGroup.toContinuousAdd
AddCommGroup.toAddGroup
ContinuousLinearMap.algebra
Algebra.toSMul
β€”IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
ContinuousSMul.continuousConstSMul
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Subalgebra.center_eq_top
Unique.instSubsingleton
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_ne
SeparatingDual.exists_eq_one
IsScalarTower.left
one_smul
Subalgebra.mem_center_iff
center_eq_bot
algebraMap_smul
ContinuousLinearMap.isScalarTower

ContinuousLinearEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
conjContinuousAlgEquiv_ext_iff πŸ“–mathematicalβ€”conjContinuousAlgEquiv
ContinuousSMul.continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
Units
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
instSMulUnitsId
AddCommMonoid.toAddMonoid
smulCommClass_self
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DistribMulAction.toMulAction
CommMonoid.toMonoid
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
β€”RingHomInvPair.ids
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
IsScalarTower.left
ContinuousSMul.continuousConstSMul
RingHomCompTriple.ids
ContinuousLinearMap.comp_assoc
Subalgebra.mem_center_iff
Algebra.IsCentral.center_eq_bot
Algebra.IsCentral.instContinuousLinearMap
Algebra.IsCentral.self
Algebra.algebraMap_eq_smul_one
zero_smul
EquivLike.toEmbeddingLike
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousSemilinearEquivClass.continuousSemilinearMapClass
continuousSemilinearEquivClass
map_zero
smul_zero
map_smul
SemilinearMapClass.toMulActionSemiHomClass
ContinuousLinearMap.ext
symm_apply_apply

SeparatingDual

Theorems

NameKindAssumesProvesValidatesDepends On
dualMap_surjective_iff πŸ“–mathematicalβ€”ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
Module.Dual
DFunLike.coe
LinearMap
LinearMap.addCommMonoid
LinearMap.module
smulCommClass_self
CommSemiring.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
LinearMap.instFunLike
LinearMap.dualMap
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”smulCommClass_self
LinearMap.dualMap_surjective_iff
Function.Surjective.of_comp
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
Algebra.to_smulCommClass
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
SMulCommClass.symm
separatingDual_iff_injective
IsTopologicalRing.to_topologicalAddGroup
RingHomCompTriple.ids
LinearMap.flip_surjective_iff₁
LinearMap.coe_comp
exists_continuousLinearEquiv_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
β€”RingHomInvPair.ids
exists_eq_one_ne_zero_of_ne_zero_pair
map_add
SemilinearMapClass.toAddHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
add_smul
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
map_smul
SemilinearMapClass.toMulActionSemiHomClass
smul_add
smul_smul
MulActionSemiHomClass.map_smulβ‚›β‚—
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
mul_sub
mul_one
add_sub_cancel
mul_comm
mul_assoc
inv_mul_cancelβ‚€
smul_sub
one_mul
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Tactic.Abel.zero_termg
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_invβ‚€
RingHomClass.toMonoidWithZeroHomClass
mul_inv_cancelβ‚€
Continuous.fun_add
IsTopologicalAddGroup.toContinuousAdd
continuous_id'
Continuous.smul
ContinuousLinearMap.continuous
continuous_const
Continuous.comp'
continuous_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
Continuous.prodMk
one_smul
exists_eq_one πŸ“–mathematicalβ€”DFunLike.coe
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”exists_ne_zero
Algebra.to_smulCommClass
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
inv_mul_cancelβ‚€
exists_eq_one_ne_zero_of_ne_zero_pair πŸ“–mathematicalβ€”DFunLike.coe
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”exists_eq_one
ne_or_eq
Algebra.to_smulCommClass
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
inv_mul_cancelβ‚€
mul_one
IsTopologicalSemiring.toContinuousAdd
add_zero
zero_add
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_ne_zero πŸ“–β€”β€”β€”β€”exists_ne_zero'
exists_ne_zero' πŸ“–β€”β€”β€”β€”β€”
exists_separating_of_ne πŸ“–β€”β€”β€”β€”exists_ne_zero
sub_ne_zero_of_ne
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
instNontrivialContinuousLinearMapIdOfContinuousSMul πŸ“–mathematicalβ€”Nontrivial
ContinuousLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
β€”exists_ne
exists_ne_zero
IsScalarTower.left
DFunLike.ne_iff
t1Space πŸ“–mathematicalβ€”T1Spaceβ€”t1Space_iff_exists_open
exists_separating_of_ne
IsOpen.preimage
ContinuousLinearMap.continuous
isOpen_compl_singleton
t2Space πŸ“–mathematicalβ€”T2Spaceβ€”t2Space_iff
exists_separating_of_ne
separated_by_continuous
ContinuousLinearMap.continuous

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instSeparatingDual πŸ“–mathematicalβ€”SeparatingDual
NormedRing.toRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedSpace.toModule
β€”RestrictScalars.isScalarTower
NormedSpace.toLocallyConvexSpace'
map_zero
AddMonoidHomClass.toZeroHomClass
AddMonoidHom.instAddMonoidHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
RCLike.geometric_hahn_banach_point_point
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
instSeparatingDualRealOfIsTopologicalAddGroupOfContinuousSMulOfLocallyConvexSpaceOfT1Space πŸ“–mathematicalβ€”SeparatingDual
Real
Real.instRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”geometric_hahn_banach_point_point
LT.lt.ne'
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
ContinuousLinearMap.continuousSemilinearMapClass
separatingDual_def πŸ“–mathematicalβ€”SeparatingDualβ€”β€”
separatingDual_iff_injective πŸ“–mathematicalβ€”SeparatingDual
DivisionRing.toRing
Field.toDivisionRing
LinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap
AddCommGroup.toAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toModule
ContinuousLinearMap.addCommMonoid
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
ContinuousLinearMap.module
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
DFunLike.coe
LinearMap.addCommMonoid
LinearMap.module
SMulCommClass.symm
LinearMap.instFunLike
LinearMap.flip
ContinuousLinearMap.coeLM
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
Algebra.to_smulCommClass
SMulCommClass.continuousConstSMul
IsTopologicalSemiring.toContinuousMul
SMulCommClass.symm
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
not_imp_comm
LinearMap.ext_iff

---

← Back to Index