Documentation Verification Report

Hermitian

πŸ“ Source: Mathlib/Analysis/Matrix/Hermitian.lean

Statistics

MetricCount
Definitions0
Theoremscoe_re_apply_self, coe_re_diag, im_star_dotProduct_mulVec_self, isHermitian_iff_isSymmetric
4
Total4

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
isHermitian_iff_isSymmetric πŸ“–mathematicalβ€”IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
StarRing.toStarAddMonoid
RCLike.toStarRing
LinearMap.IsSymmetric
EuclideanSpace
PiLp.seminormedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
PiLp.innerProductSpace
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
RCLike.innerProductSpace
DFunLike.coe
LinearEquiv
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Matrix
LinearMap
ESeminormedAddCommMonoid.toAddCommMonoid
PiLp.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
PiLp.normedAddCommGroup
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
NormedAddCommGroup.toAddCommGroup
WithLp.instModule
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
NormedRing.toRing
NormedCommRing.toNormedRing
NormedSpace.toModule
InnerProductSpace.toNormedSpace
addCommMonoid
LinearMap.addCommMonoid
module
LinearMap.module
WithLp.instSMulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Module.toDistribMulAction
Function.smulCommClass
Algebra.to_smulCommClass
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
toEuclideanLin
β€”fact_one_le_two_ennreal
RingHomInvPair.ids
WithLp.instSMulCommClass
Function.smulCommClass
Algebra.to_smulCommClass
LinearMap.IsSymmetric.eq_1
Function.Surjective.forallβ‚‚
WithLp.toLp_surjective
star_mulVec
dotProduct_comm
dotProduct_mulVec
ext
Pi.single_star
star_one
single_vecMul
one_smul
single_dotProduct
one_mul
mulVec_single
dotProduct_single
mul_one

Matrix.IsHermitian

Theorems

NameKindAssumesProvesValidatesDepends On
coe_re_apply_self πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
StarRing.toStarAddMonoid
RCLike.toStarRing
RCLike.ofReal
DFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.re
β€”RCLike.conj_eq_iff_re
RCLike.star_def
Matrix.conjTranspose_apply
eq
coe_re_diag πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
StarRing.toStarAddMonoid
RCLike.toStarRing
RCLike.ofReal
DFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.re
Matrix.diag
β€”coe_re_apply_self
im_star_dotProduct_mulVec_self πŸ“–mathematicalMatrix.IsHermitian
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
StarRing.toStarAddMonoid
RCLike.toStarRing
DFunLike.coe
AddMonoidHom
Real
AddMonoid.toZero
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
CommRing.toRing
Field.toCommRing
NormedField.toField
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
Real.instAddMonoid
AddMonoidHom.instFunLike
RCLike.im
dotProduct
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
Star.star
Pi.instStarForall
Matrix.mulVec
Real.instZero
β€”dotProduct_comm
LinearMap.IsSymmetric.im_inner_self_apply
fact_one_le_two_ennreal
RingHomInvPair.ids
WithLp.instSMulCommClass
Function.smulCommClass
Algebra.to_smulCommClass
Matrix.isHermitian_iff_isSymmetric

---

← Back to Index