π Source: Mathlib/Analysis/Matrix/Normed.lean
frobeniusNormedAddCommGroup
frobeniusNormedAlgebra
frobeniusNormedRing
frobeniusNormedSpace
frobeniusSeminormedAddCommGroup
linftyOpNonUnitalNormedRing
linftyOpNonUnitalSemiNormedRing
linftyOpNormedAddCommGroup
linftyOpNormedAlgebra
linftyOpNormedRing
linftyOpNormedSpace
linftyOpSemiNormedRing
linftyOpSeminormedAddCommGroup
normedAddCommGroup
normedSpace
seminormedAddCommGroup
frobeniusIsBoundedSMul
frobeniusNormSMulClass
frobenius_nnnorm_conjTranspose
frobenius_nnnorm_def
frobenius_nnnorm_diagonal
frobenius_nnnorm_map_eq
frobenius_nnnorm_mul
frobenius_nnnorm_one
frobenius_nnnorm_replicateCol
frobenius_nnnorm_replicateRow
frobenius_nnnorm_transpose
frobenius_norm_conjTranspose
frobenius_norm_def
frobenius_norm_diagonal
frobenius_norm_map_eq
frobenius_norm_mul
frobenius_norm_replicateCol
frobenius_norm_replicateRow
frobenius_norm_transpose
frobenius_normedStarGroup
instNormOneClassOfNonempty
instNormedStarGroup
isBoundedSMul
linftyOpIsBoundedSMul
linftyOpNormSMulClass
linfty_opNNNorm_def
linfty_opNNNorm_diagonal
linfty_opNNNorm_eq_opNNNorm
linfty_opNNNorm_mul
linfty_opNNNorm_mulVec
linfty_opNNNorm_replicateCol
linfty_opNNNorm_replicateRow
linfty_opNNNorm_toMatrix
linfty_opNormOneClass
linfty_opNorm_def
linfty_opNorm_diagonal
linfty_opNorm_eq_opNorm
linfty_opNorm_mul
linfty_opNorm_mulVec
linfty_opNorm_replicateCol
linfty_opNorm_replicateRow
linfty_opNorm_toMatrix
nnnorm_conjTranspose
nnnorm_def
nnnorm_diagonal
nnnorm_entry_le_entrywise_sup_nnnorm
nnnorm_le_iff
nnnorm_lt_iff
nnnorm_map_eq
nnnorm_replicateCol
nnnorm_replicateRow
nnnorm_transpose
normSMulClass
norm_conjTranspose
norm_def
norm_diagonal
norm_entry_le_entrywise_sup_norm
norm_eq_sup_sup_nnnorm
norm_le_iff
norm_lt_iff
norm_map_eq
norm_replicateCol
norm_replicateRow
norm_transpose
entrywise_sup_norm_bound_of_unitary
Int.Matrix.one_le_norm_A_of_ne_zero
Int.Matrix.exists_ne_zero_int_vec_norm_le
Int.Matrix.exists_ne_zero_int_vec_norm_le'
IsBoundedSMul
Matrix
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
PiLp.isBoundedSMulSeminormedAddCommGroupToPi
Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
NormSMulClass
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
PiLp.normSMulClassSeminormedAddCommGroupToPi
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
nnnorm_star
NNReal
Real
NNReal.instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
instOfNatAtLeastTwo
Real.instNatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
PiLp.nnnorm_eq_of_L2
Finset.sum_congr
NNReal.sq_sqrt
NNReal.sqrt_eq_rpow
NNReal.rpow_two
diagonal
WithLp
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
PiLp.seminormedAddCommGroup
WithLp.toLp
Finset.sum_subset
Finset.subset_univ
Iff.not
Finset.mem_map
Finset.mem_univ
diagonal_apply_ne
nnnorm_zero
NNReal.zero_rpow
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
Finset.sum_map
diagonal_apply_eq
map
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedCommRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NNReal.mul_rpow
Finset.sum_comm
Finset.sum_mul_sum
NNReal.rpow_le_rpow
Finset.sum_le_sum
NNReal.addLeftMono
NNReal.rpow_le_rpow_iff
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NNReal.rpow_mul
mul_div_cancelβ
NNReal.rpow_one
RCLike.inner_apply'
star_star
CStarRing.to_normedStarGroup
RCLike.instCStarRing
nnnorm_inner_le_nnnorm
le_of_lt
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
one
DFunLike.coe
OrderIso
instFunLikeOrderIso
NNReal.sqrt
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
PiLp.nnnorm_toLp_const
ENNReal.ofNat_ne_top
one_div
ENNReal.toReal_inv
ENNReal.toReal_ofNat
Unique.fintype
replicateCol
replicateRow
transpose
Norm.norm
Real.instPow
Real.instAddCommMonoid
NNReal.rpow_ofNat
NNReal.coe_sum
Real.rpow_ofNat
PiLp.instNorm
Real.instLE
NormedAddCommGroup.toNorm
Real.instMul
Finset.univ_unique
Finset.sum_const
Finset.card_singleton
one_smul
PiLp.norm_eq_of_L2
Real.sqrt_eq_rpow
Fintype.sum_unique
Real.rpow_two
NormedStarGroup
instStarAddMonoid
AddCommGroup.toAddGroup
le_of_eq
NormOneClass
NormOneClass.norm_one
Pi.normOneClass
Pi.instIsBoundedSMul
fact_one_le_one_ennreal
Pi.instNormSMulClass
Finset.sup
instSemilatticeSupNNReal
NNReal.instOrderBot
Pi.seminormedAddGroup
Pi.nnnorm_def
Finset.sum_eq_single_of_mem
diagonal_apply_ne'
NontriviallyNormedField.toNormedField
ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Pi.topologicalSpace
Pi.addCommMonoid
Pi.Function.module
Semiring.toModule
ContinuousLinearMap.toSeminormedAddCommGroup
Pi.seminormedAddCommGroup
Pi.normedSpace
NormedField.toNormedSpace
RingHomIsometric.ids
mulVecLin
ContinuousLinearMap.opNNNorm_eq_of_bounds
Finset.sup_le
isEmpty_or_nonempty
Finset.univ_eq_empty
NNReal.instCanonicallyOrderedAdd
Finset.sup_const
Finset.univ_nonempty
Finset.sup_le_iff
mul_one
nnnorm_one
NormedDivisionRing.to_normOneClass
NNReal.nnnorm_eq
nnnorm_algebraMap
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Finset.sup_mono_fun
nnnorm_sum_le_of_le
nnnorm_mul_le
Finset.mul_sum
mul_le_mul_right
NNReal.mulLeftMono
Finset.le_sup
le_refl
mulVec
Finset.sup_singleton
LinearEquiv
RingHomInvPair.ids
LinearMap
LinearMap.addCommMonoid
addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Algebra.to_smulCommClass
Algebra.id
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NormedSpace.toModule
toLin'_toMatrix'
NonUnitalSeminormedRing.toNorm
SeminormedRing.toNonUnitalSeminormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NNReal.toReal
PiLp.nnnorm_eq_of_L1
ContinuousLinearMap.hasOpNorm
Pi.nonUnitalSeminormedRing
le_antisymm
eq_or_ne
zero_le
Eq.trans_le
LE.le.trans
nnnorm_le_pi_nnnorm
Preorder.toLT
instZeroNNReal
pi_nnnorm_lt_iff
Finset.sup_comm
norm_le_pi_norm
Real.instZero
pi_norm_le_iff_of_nonneg
Real.instLT
pi_norm_lt_iff
---
β Back to Index