Documentation Verification Report

Normed

πŸ“ Source: Mathlib/Analysis/Matrix/Normed.lean

Statistics

MetricCount
DefinitionsfrobeniusNormedAddCommGroup, frobeniusNormedAlgebra, frobeniusNormedRing, frobeniusNormedSpace, frobeniusSeminormedAddCommGroup, linftyOpNonUnitalNormedRing, linftyOpNonUnitalSemiNormedRing, linftyOpNormedAddCommGroup, linftyOpNormedAlgebra, linftyOpNormedRing, linftyOpNormedSpace, linftyOpSemiNormedRing, linftyOpSeminormedAddCommGroup, normedAddCommGroup, normedSpace, seminormedAddCommGroup
16
TheoremsfrobeniusIsBoundedSMul, frobeniusNormSMulClass, frobenius_nnnorm_conjTranspose, frobenius_nnnorm_def, frobenius_nnnorm_diagonal, frobenius_nnnorm_map_eq, frobenius_nnnorm_mul, frobenius_nnnorm_one, frobenius_nnnorm_replicateCol, frobenius_nnnorm_replicateRow, frobenius_nnnorm_transpose, frobenius_norm_conjTranspose, frobenius_norm_def, frobenius_norm_diagonal, frobenius_norm_map_eq, frobenius_norm_mul, frobenius_norm_replicateCol, frobenius_norm_replicateRow, frobenius_norm_transpose, frobenius_normedStarGroup, instNormOneClassOfNonempty, instNormedStarGroup, isBoundedSMul, linftyOpIsBoundedSMul, linftyOpNormSMulClass, linfty_opNNNorm_def, linfty_opNNNorm_diagonal, linfty_opNNNorm_eq_opNNNorm, linfty_opNNNorm_mul, linfty_opNNNorm_mulVec, linfty_opNNNorm_replicateCol, linfty_opNNNorm_replicateRow, linfty_opNNNorm_toMatrix, linfty_opNormOneClass, linfty_opNorm_def, linfty_opNorm_diagonal, linfty_opNorm_eq_opNorm, linfty_opNorm_mul, linfty_opNorm_mulVec, linfty_opNorm_replicateCol, linfty_opNorm_replicateRow, linfty_opNorm_toMatrix, nnnorm_conjTranspose, nnnorm_def, nnnorm_diagonal, nnnorm_entry_le_entrywise_sup_nnnorm, nnnorm_le_iff, nnnorm_lt_iff, nnnorm_map_eq, nnnorm_replicateCol, nnnorm_replicateRow, nnnorm_transpose, normSMulClass, norm_conjTranspose, norm_def, norm_diagonal, norm_entry_le_entrywise_sup_norm, norm_eq_sup_sup_nnnorm, norm_le_iff, norm_lt_iff, norm_map_eq, norm_replicateCol, norm_replicateRow, norm_transpose
64
Total80

Matrix

Definitions

NameCategoryTheorems
frobeniusNormedAddCommGroup πŸ“–CompOp
1 mathmath: frobenius_norm_mul
frobeniusNormedAlgebra πŸ“–CompOpβ€”
frobeniusNormedRing πŸ“–CompOpβ€”
frobeniusNormedSpace πŸ“–CompOpβ€”
frobeniusSeminormedAddCommGroup πŸ“–CompOp
19 mathmath: frobenius_norm_replicateCol, frobenius_nnnorm_mul, frobeniusIsBoundedSMul, frobenius_nnnorm_map_eq, frobenius_normedStarGroup, frobenius_nnnorm_one, frobenius_norm_map_eq, frobenius_norm_conjTranspose, frobenius_norm_def, frobenius_nnnorm_replicateRow, frobenius_nnnorm_replicateCol, frobenius_nnnorm_diagonal, frobeniusNormSMulClass, frobenius_norm_diagonal, frobenius_nnnorm_def, frobenius_nnnorm_transpose, frobenius_norm_replicateRow, frobenius_nnnorm_conjTranspose, frobenius_norm_transpose
linftyOpNonUnitalNormedRing πŸ“–CompOpβ€”
linftyOpNonUnitalSemiNormedRing πŸ“–CompOp
1 mathmath: linfty_opNormOneClass
linftyOpNormedAddCommGroup πŸ“–CompOp
2 mathmath: linfty_opNorm_toMatrix, linfty_opNorm_eq_opNorm
linftyOpNormedAlgebra πŸ“–CompOpβ€”
linftyOpNormedRing πŸ“–CompOpβ€”
linftyOpNormedSpace πŸ“–CompOpβ€”
linftyOpSemiNormedRing πŸ“–CompOpβ€”
linftyOpSeminormedAddCommGroup πŸ“–CompOp
16 mathmath: linfty_opNorm_diagonal, linfty_opNorm_replicateRow, linfty_opNNNorm_mulVec, linfty_opNNNorm_eq_opNNNorm, linftyOpIsBoundedSMul, linfty_opNNNorm_toMatrix, linftyOpNormSMulClass, linfty_opNorm_mulVec, linfty_opNorm_replicateCol, linfty_opNNNorm_mul, linfty_opNorm_mul, linfty_opNNNorm_replicateCol, linfty_opNNNorm_replicateRow, linfty_opNNNorm_diagonal, linfty_opNNNorm_def, linfty_opNorm_def
normedAddCommGroup πŸ“–CompOp
1 mathmath: entrywise_sup_norm_bound_of_unitary
normedSpace πŸ“–CompOpβ€”
seminormedAddCommGroup πŸ“–CompOp
28 mathmath: norm_diagonal, norm_def, nnnorm_lt_iff, norm_entry_le_entrywise_sup_norm, isBoundedSMul, norm_map_eq, norm_le_iff, nnnorm_replicateRow, instNormOneClassOfNonempty, nnnorm_entry_le_entrywise_sup_nnnorm, norm_transpose, norm_replicateRow, nnnorm_transpose, Int.Matrix.one_le_norm_A_of_ne_zero, norm_conjTranspose, norm_lt_iff, nnnorm_conjTranspose, normSMulClass, nnnorm_diagonal, nnnorm_def, nnnorm_le_iff, norm_replicateCol, nnnorm_map_eq, instNormedStarGroup, Int.Matrix.exists_ne_zero_int_vec_norm_le, norm_eq_sup_sup_nnnorm, nnnorm_replicateCol, Int.Matrix.exists_ne_zero_int_vec_norm_le'

Theorems

NameKindAssumesProvesValidatesDepends On
frobeniusIsBoundedSMul πŸ“–mathematicalβ€”IsBoundedSMul
Matrix
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
frobeniusSeminormedAddCommGroup
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”PiLp.isBoundedSMulSeminormedAddCommGroupToPi
Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobeniusNormSMulClass πŸ“–mathematicalβ€”NormSMulClass
Matrix
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”PiLp.normSMulClassSeminormedAddCommGroupToPi
Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_nnnorm_conjTranspose πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
β€”frobenius_nnnorm_map_eq
nnnorm_star
frobenius_nnnorm_transpose
frobenius_nnnorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
NNReal
Real
NNReal.instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
PiLp.nnnorm_eq_of_L2
Finset.sum_congr
NNReal.sq_sqrt
NNReal.sqrt_eq_rpow
NNReal.rpow_two
frobenius_nnnorm_diagonal πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.seminormedAddCommGroup
fact_one_le_two_ennreal
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_nnnorm_def
PiLp.nnnorm_eq_of_L2
Finset.sum_congr
Finset.sum_subset
Finset.subset_univ
Iff.not
Finset.mem_map
Finset.mem_univ
diagonal_apply_ne
nnnorm_zero
NNReal.zero_rpow
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
Finset.sum_map
NNReal.sqrt_eq_rpow
diagonal_apply_eq
NNReal.rpow_two
frobenius_nnnorm_map_eq πŸ“–mathematicalNNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Matrix
frobeniusSeminormedAddCommGroup
map
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_nnnorm_def
Finset.sum_congr
frobenius_nnnorm_mul πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_nnnorm_def
Finset.sum_congr
NNReal.mul_rpow
Finset.sum_comm
Finset.sum_mul_sum
NNReal.rpow_le_rpow
Finset.sum_le_sum
NNReal.addLeftMono
NNReal.rpow_le_rpow_iff
one_half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
NNReal.rpow_mul
mul_div_cancelβ‚€
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
NNReal.rpow_one
NNReal.rpow_two
fact_one_le_two_ennreal
RCLike.inner_apply'
star_star
PiLp.nnnorm_eq_of_L2
nnnorm_star
CStarRing.to_normedStarGroup
RCLike.instCStarRing
NNReal.sqrt_eq_rpow
nnnorm_inner_le_nnnorm
le_of_lt
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
frobenius_nnnorm_one πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
one
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_nnnorm_diagonal
PiLp.nnnorm_toLp_const
ENNReal.ofNat_ne_top
one_div
ENNReal.toReal_inv
ENNReal.toReal_ofNat
NNReal.sqrt_eq_rpow
frobenius_nnnorm_replicateCol πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
Unique.fintype
replicateCol
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.seminormedAddCommGroup
fact_one_le_two_ennreal
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_norm_replicateCol
frobenius_nnnorm_replicateRow πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
Unique.fintype
replicateRow
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.seminormedAddCommGroup
fact_one_le_two_ennreal
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_norm_replicateRow
frobenius_nnnorm_transpose πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
frobeniusSeminormedAddCommGroup
transpose
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_nnnorm_def
Finset.sum_comm
Finset.sum_congr
frobenius_norm_conjTranspose πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”frobenius_nnnorm_conjTranspose
frobenius_norm_def πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
Real
Real.instPow
Finset.sum
Real.instAddCommMonoid
Finset.univ
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_nnnorm_def
Finset.sum_congr
NNReal.rpow_ofNat
one_div
NNReal.coe_sum
Real.rpow_ofNat
frobenius_norm_diagonal πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.instNorm
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
frobenius_nnnorm_diagonal
frobenius_norm_map_eq πŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
Matrix
frobeniusSeminormedAddCommGroup
map
β€”frobenius_nnnorm_map_eq
frobenius_norm_mul πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Matrix
NormedAddCommGroup.toNorm
frobeniusNormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instMul
β€”frobenius_nnnorm_mul
frobenius_norm_replicateCol πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
Unique.fintype
replicateCol
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.instNorm
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_norm_def
Finset.sum_congr
Finset.univ_unique
Real.rpow_ofNat
Finset.sum_const
Finset.card_singleton
one_smul
one_div
PiLp.norm_eq_of_L2
Real.sqrt_eq_rpow
frobenius_norm_replicateRow πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
Unique.fintype
replicateRow
WithLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PiLp.instNorm
WithLp.toLp
β€”Nat.instAtLeastTwoHAddOfNat
frobenius_norm_def
Fintype.sum_unique
PiLp.norm_eq_of_L2
Real.sqrt_eq_rpow
Finset.sum_congr
Real.rpow_two
frobenius_norm_transpose πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
frobeniusSeminormedAddCommGroup
transpose
β€”frobenius_nnnorm_transpose
frobenius_normedStarGroup πŸ“–mathematicalβ€”NormedStarGroup
Matrix
frobeniusSeminormedAddCommGroup
instStarAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
SeminormedAddCommGroup.toAddCommGroup
β€”le_of_eq
frobenius_norm_conjTranspose
instNormOneClassOfNonempty πŸ“–mathematicalβ€”NormOneClass
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
one
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”norm_diagonal
NormOneClass.norm_one
Pi.normOneClass
instNormedStarGroup πŸ“–mathematicalβ€”NormedStarGroup
Matrix
seminormedAddCommGroup
instStarAddMonoid
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”le_of_eq
norm_conjTranspose
isBoundedSMul πŸ“–mathematicalβ€”IsBoundedSMul
Matrix
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
seminormedAddCommGroup
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Pi.instIsBoundedSMul
linftyOpIsBoundedSMul πŸ“–mathematicalβ€”IsBoundedSMul
Matrix
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
linftyOpSeminormedAddCommGroup
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
zero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”fact_one_le_one_ennreal
Pi.instIsBoundedSMul
PiLp.isBoundedSMulSeminormedAddCommGroupToPi
linftyOpNormSMulClass πŸ“–mathematicalβ€”NormSMulClass
Matrix
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”fact_one_le_one_ennreal
Pi.instNormSMulClass
PiLp.normSMulClassSeminormedAddCommGroupToPi
linfty_opNNNorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”linfty_opNorm_def
linfty_opNNNorm_diagonal πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.seminormedAddGroup
β€”linfty_opNNNorm_def
Pi.nnnorm_def
Finset.sum_eq_single_of_mem
Finset.mem_univ
diagonal_apply_ne'
nnnorm_zero
diagonal_apply_eq
linfty_opNNNorm_eq_opNNNorm πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
ContinuousLinearMap.toSeminormedAddCommGroup
Pi.seminormedAddCommGroup
Pi.normedSpace
NormedField.toNormedSpace
RingHomIsometric.ids
mulVecLin
β€”RingHomIsometric.ids
ContinuousLinearMap.opNNNorm_eq_of_bounds
linfty_opNNNorm_mulVec
linfty_opNNNorm_def
Finset.sup_le
isEmpty_or_nonempty
Finset.sum_congr
Finset.univ_eq_empty
NNReal.instCanonicallyOrderedAdd
Pi.nnnorm_def
Finset.sup_const
Finset.univ_nonempty
Finset.sup_le_iff
mul_one
Finset.mem_univ
nnnorm_one
NormedDivisionRing.to_normOneClass
NNReal.nnnorm_eq
nnnorm_algebraMap
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
linfty_opNNNorm_mul πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”linfty_opNNNorm_def
Finset.sum_congr
Finset.sup_mono_fun
Finset.sum_le_sum
NNReal.addLeftMono
nnnorm_sum_le_of_le
nnnorm_mul_le
Finset.sum_comm
Finset.mul_sum
mul_le_mul_right
NNReal.mulLeftMono
Finset.le_sup
le_refl
linfty_opNNNorm_mulVec πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Matrix
linftyOpSeminormedAddCommGroup
β€”linfty_opNNNorm_replicateCol
linfty_opNNNorm_mul
linfty_opNNNorm_replicateCol πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
Unique.fintype
replicateCol
Pi.seminormedAddGroup
β€”linfty_opNNNorm_def
Pi.nnnorm_def
Finset.sum_congr
Finset.univ_unique
Finset.sum_const
Finset.card_singleton
one_smul
linfty_opNNNorm_replicateRow πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
Unique.fintype
replicateRow
Finset.sum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
β€”linfty_opNNNorm_def
Finset.univ_unique
Finset.sum_congr
Finset.sup_singleton
linfty_opNNNorm_toMatrix πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
linftyOpSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.addCommMonoid
addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NormedField.toNormedSpace
ContinuousLinearMap
ContinuousLinearMap.toSeminormedAddCommGroup
Pi.seminormedAddCommGroup
Pi.normedSpace
RingHomIsometric.ids
β€”RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
RingHomIsometric.ids
linfty_opNNNorm_eq_opNNNorm
toLin'_toMatrix'
linfty_opNormOneClass πŸ“–mathematicalβ€”NormOneClass
Matrix
NonUnitalSeminormedRing.toNorm
linftyOpNonUnitalSemiNormedRing
SeminormedRing.toNonUnitalSeminormedRing
one
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”linfty_opNorm_diagonal
NormOneClass.norm_one
Pi.normOneClass
linfty_opNorm_def πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
NNReal.toReal
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”fact_one_le_one_ennreal
PiLp.nnnorm_eq_of_L1
Finset.sum_congr
linfty_opNorm_diagonal πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.seminormedAddCommGroup
β€”fact_one_le_one_ennreal
linfty_opNNNorm_diagonal
linfty_opNorm_eq_opNorm πŸ“–mathematicalβ€”Norm.norm
Matrix
NormedAddCommGroup.toNorm
linftyOpNormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
ContinuousLinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
ContinuousLinearMap.hasOpNorm
Pi.seminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
Pi.normedSpace
NormedField.toNormedSpace
mulVecLin
β€”RingHomIsometric.ids
linfty_opNNNorm_eq_opNNNorm
linfty_opNorm_mul πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Real.instMul
β€”linfty_opNNNorm_mul
linfty_opNorm_mulVec πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NonUnitalSeminormedRing.toNorm
Pi.nonUnitalSeminormedRing
mulVec
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalSeminormedRing.toNonUnitalRing
Real.instMul
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
β€”linfty_opNNNorm_mulVec
linfty_opNorm_replicateCol πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
Unique.fintype
replicateCol
Pi.seminormedAddCommGroup
β€”fact_one_le_one_ennreal
linfty_opNNNorm_replicateCol
linfty_opNorm_replicateRow πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
linftyOpSeminormedAddCommGroup
Unique.fintype
replicateRow
Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
β€”linfty_opNNNorm_replicateRow
NNReal.coe_sum
Finset.sum_congr
linfty_opNorm_toMatrix πŸ“–mathematicalβ€”Norm.norm
Matrix
NormedAddCommGroup.toNorm
linftyOpNormedAddCommGroup
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
DFunLike.coe
LinearEquiv
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearMap
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Pi.Function.module
Semiring.toModule
LinearMap.addCommMonoid
addCommMonoid
LinearMap.module
Function.smulCommClass
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Algebra.to_smulCommClass
Algebra.id
module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
LinearMap.toMatrix'
ContinuousLinearMap.toLinearMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
ContinuousLinearMap
ContinuousLinearMap.hasOpNorm
Pi.seminormedAddCommGroup
Pi.normedSpace
β€”RingHomInvPair.ids
Function.smulCommClass
Algebra.to_smulCommClass
RingHomIsometric.ids
linfty_opNNNorm_toMatrix
nnnorm_conjTranspose πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
β€”nnnorm_map_eq
nnnorm_star
nnnorm_transpose
nnnorm_def πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
Pi.seminormedAddGroup
β€”β€”
nnnorm_diagonal πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.seminormedAddGroup
β€”Pi.nnnorm_def
le_antisymm
Finset.sup_le
eq_or_ne
diagonal_apply_eq
le_refl
diagonal_apply_ne
nnnorm_zero
zero_le
NNReal.instCanonicallyOrderedAdd
Eq.trans_le
Finset.le_sup
Finset.mem_univ
nnnorm_entry_le_entrywise_sup_nnnorm πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Matrix
seminormedAddCommGroup
β€”LE.le.trans
nnnorm_le_pi_nnnorm
nnnorm_le_iff πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
β€”β€”
nnnorm_lt_iff πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
β€”pi_nnnorm_lt_iff
nnnorm_map_eq πŸ“–mathematicalNNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
Matrix
seminormedAddCommGroup
map
β€”Pi.nnnorm_def
nnnorm_replicateCol πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
Unique.fintype
replicateCol
Pi.seminormedAddGroup
β€”Pi.nnnorm_def
Finset.univ_unique
Finset.sup_singleton
nnnorm_replicateRow πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
Unique.fintype
replicateRow
Pi.seminormedAddGroup
β€”Pi.nnnorm_def
Finset.univ_unique
Finset.sup_singleton
nnnorm_transpose πŸ“–mathematicalβ€”NNNorm.nnnorm
Matrix
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
transpose
β€”Finset.sup_comm
normSMulClass πŸ“–mathematicalβ€”NormSMulClass
Matrix
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
smul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”Pi.instNormSMulClass
norm_conjTranspose πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
conjTranspose
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”nnnorm_conjTranspose
norm_def πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
Pi.seminormedAddCommGroup
β€”β€”
norm_diagonal πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
diagonal
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
Pi.seminormedAddCommGroup
β€”nnnorm_diagonal
norm_entry_le_entrywise_sup_norm πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
Matrix
seminormedAddCommGroup
β€”LE.le.trans
norm_le_pi_norm
norm_eq_sup_sup_nnnorm πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
NNReal.toReal
Finset.sup
NNReal
instSemilatticeSupNNReal
NNReal.instOrderBot
Finset.univ
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”Pi.nnnorm_def
norm_le_iff πŸ“–mathematicalReal
Real.instLE
Real.instZero
Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
β€”pi_norm_le_iff_of_nonneg
norm_lt_iff πŸ“–mathematicalReal
Real.instLT
Real.instZero
Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
β€”pi_norm_lt_iff
norm_map_eq πŸ“–mathematicalNorm.norm
SeminormedAddCommGroup.toNorm
Matrix
seminormedAddCommGroup
map
β€”nnnorm_map_eq
norm_replicateCol πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
Unique.fintype
replicateCol
Pi.seminormedAddCommGroup
β€”nnnorm_replicateCol
norm_replicateRow πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
Unique.fintype
replicateRow
Pi.seminormedAddCommGroup
β€”nnnorm_replicateRow
norm_transpose πŸ“–mathematicalβ€”Norm.norm
Matrix
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
transpose
β€”nnnorm_transpose

---

← Back to Index