π Source: Mathlib/Analysis/MeanInequalities.lean
Lp_add_le
inner_le_Lp_mul_Lq
inner_le_weight_mul_Lp_of_nonneg
rpow_sum_le_const_mul_sum_rpow
young_inequality
Lp_add_le_hasSum
Lp_add_le_tsum
Lp_add_le_tsum'
geom_mean_le_arith_mean2_weighted
geom_mean_le_arith_mean3_weighted
geom_mean_le_arith_mean4_weighted
geom_mean_le_arith_mean_weighted
inner_le_Lp_mul_Lq_hasSum
inner_le_Lp_mul_Lq_tsum
inner_le_Lp_mul_Lq_tsum'
inner_le_weight_mul_Lp
isGreatest_Lp
summable_Lp_add
summable_mul_of_Lp_Lq
young_inequality_real
Lp_add_le_hasSum_of_nonneg
Lp_add_le_of_nonneg
Lp_add_le_tsum_of_nonneg
Lp_add_le_tsum_of_nonneg'
arith_mean_weighted_of_constant
compact_inner_le_weight_mul_Lp_of_nonneg
geom_mean_eq_arith_mean_weighted_iff
geom_mean_eq_arith_mean_weighted_iff'
geom_mean_eq_arith_mean_weighted_of_constant
geom_mean_le_arith_mean
geom_mean_lt_arith_mean_weighted_iff_of_pos
geom_mean_weighted_of_constant
harm_mean_le_geom_mean
harm_mean_le_geom_mean_weighted
inner_le_Lp_mul_Lq_hasSum_of_nonneg
inner_le_Lp_mul_Lq_of_nonneg
inner_le_Lp_mul_Lq_tsum_of_nonneg
inner_le_Lp_mul_Lq_tsum_of_nonneg'
rpow_sum_le_const_mul_sum_rpow_of_nonneg
summable_Lp_add_of_nonneg
summable_mul_of_Lp_Lq_of_nonneg
young_inequality_of_nonneg
Real
Real.instLE
Real.instOne
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
Finset.sum
instAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
top_add
add_top
lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
one_div
Unique.instSubsingleton
asymm
instAsymmLt
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
coe_le_coe
NNReal.Lp_add_le
Finset.sum_congr
coe_toNNReal
coe_rpow_of_nonneg
le_of_lt
one_div_pos
coe_finset_sum
Real.HolderConjugate
Distrib.toMul
Real.HolderTriple.pos
Real.HolderConjugate.symm
MulZeroClass.zero_mul
MulZeroClass.mul_zero
Finset.sum_eq_zero
instCanonicallyOrderedAdd
top_mul
mul_top
NNReal.inner_le_Lp_mul_Lq
LT.lt.le
Real.instSub
Real.instInv
LE.le.eq_or_lt
inv_one
sub_self
rpow_zero
rpow_one
one_mul
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
inv_lt_one_of_one_ltβ
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.not_gt
instNoZeroDivisors
NNReal.inner_le_weight_mul_Lp
eq_or_ne
toNNReal_mul
inv_nonneg
coe_mul
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
eq_or_lt_of_le
Real.HolderConjugate.conjExponent
one_div_mul_cancel
Real.HolderTriple.ne_zero
Real.HolderConjugate.div_conj_eq_sub_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
one_rpow
Finset.sum_const
Nat.smul_one_eq_cast
mul_rpow_of_nonneg
Real.HolderTriple.nonneg
rpow_le_rpow
instDivInvMonoid
ofReal
le_trans
le_top
le_of_eq
div_eq_mul_inv
top_rpow_of_pos
ofReal.eq_1
coe_div
coe_add
NNReal.young_inequality_real
NNReal
instPartialOrderNNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
instSemiringNNReal
Finset.sum_add_distrib
div_self
Set.image_congr
add_mul
Distrib.rightDistribClass
add_le_add
addLeftMono
HasSum
instTopologicalSpace
SummationFilter.unconditional
LT.lt.ne'
HasSum.summable
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
rpow_inv_rpow_self
rpow_self_rpow_inv
Summable.hasSum
Summable
tsum
rpow_inv_le_iff
rpow_le_rpow_iff
Summable.sum_le_tsum
IsOrderedRing.toIsOrderedAddMonoid
instIsOrderedRing
OrderTopology.to_orderClosedTopology
instOrderTopology
SummationFilter.instLeAtTopUnconditional
zero_le
hasSum_of_isLUB
isLUB_ciSup
Summable.tsum_le_of_sum_le
instOneNNReal
toReal
Fin.sum_univ_succ
Finset.univ_eq_empty
Fin.isEmpty'
add_zero
Fin.prod_univ_succ
Finset.prod_congr
mul_one
mul_assoc
Finset.prod
CommSemiring.toCommMonoid
instCommSemiringNNReal
Real.geom_mean_le_arith_mean_weighted
coe_nonneg
eq_zero_or_pos
eq
mul_comm
div_rpow
inv_mul_cancelβ
div_le_iffβ
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
rpow_pos
div_mul_div_comm
mul_le_mul
IsOrderedRing.toMulPosMono
bot_le
rpow_of_add_eq
one_ne_zero
sub_add_cancel
Real.holderConjugate_iff
inv_inv
add_sub_cancel
ne_of_gt
rpow_rpow_inv
div_inv_eq_mul
mul_rpow
rpow_inv_rpow
IsGreatest
Set.image
setOf
zero_rpow
div_zero
Finset.sum_const_zero
add_sub_cancel_right
mul_div_cancel_left_of_imp
Real.HolderConjugate.mul_eq_add
rpow_sub'
div_mul_cancelβ
div_eq_iff
rpow_add
Real.HolderConjugate.inv_add_inv_eq_one
mul_le_mul_right
mulLeftMono
rpow_le_one
Real.HolderTriple.one_div_pos
NonAssocSemiring.toAddCommMonoidWithOne
HolderConjugate
instDiv
Real.young_inequality_of_nonneg
HolderConjugate.coe
Real.toNNReal
sup_of_le_left
Real.HolderConjugate.toNNReal
instLE
instOne
instPow
abs
lattice
instAddGroup
instAdd
abs_nonneg
instIsOrderedAddMonoid
NNReal.coe_le_coe
Finset.sum_le_sum
zero_le_one
instZeroLEOneClass
NNReal.coe_sum
instZero
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
CanLift.prf
Pi.canLift
NNReal.canLift
NNReal.Lp_add_le_hasSum
Nat.cast_zero
NNReal.instCanonicallyOrderedAdd
abs_of_nonneg
NNReal.Lp_add_le_tsum
instMul
Finset.sum_mul
Finset.expect
Algebra.toModule
NNRat
instCommSemiringNNRat
semiring
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
Field.toSemifield
instField
instRCLike
instSub
instInv
Finset.expect_eq_sum_div_card
Finset.sum_nonneg
mul_nonneg
rpow_nonneg
rpow_add'
div_le_div_of_nonneg_right
Nat.cast_nonneg'
instCommMonoid
left_ne_zero_of_mul
Finset.sum_filter_of_ne
Finset.prod_filter_of_ne
LE.le.lt_iff_ne'
Finset.sum_filter_ne_zero
instLT
Finset.prod_eq_zero
eq_zero_of_ne_zero_of_mul_left_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ne_of_lt
Finset.sum_eq_zero_iff_of_nonneg
mul_nonneg_iff_of_pos_left
lt_of_le_of_ne
Mathlib.Tactic.Push.not_and_eq
StrictConvexOn.map_sum_eq_iff
IsStrictOrderedRing.toIsStrictOrderedModule
strictConvexOn_exp
Set.mem_univ
exp_mul
exp_log
log_injOn_pos
exp_sum
finset_prod_rpow
rpow_mul
div_nonneg
mul_inv_cancelβ
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
sub_eq_zero_of_eq
NNReal.geom_mean_le_arith_mean2_weighted
NNReal.geom_mean_le_arith_mean3_weighted
NNReal.geom_mean_le_arith_mean4_weighted
ConvexOn.map_sum_le
convexOn_exp
exp_zero
rpow_def_of_pos
Finset
Finset.instMembership
lt_self_iff_false
le_antisymm
rpow_sum_of_nonneg
Finset.exists_ne_zero_of_sum_ne_zero
Finset.Nonempty
div_pos
mul_inv
Finset.mul_sum
inv_mul_eq_div
div_right_comm
one_div_nonneg
Finset.prod_pos
instNontrivial
rpow_pos_of_pos
inv_pos
Finset.sum_pos
instIsOrderedCancelAddMonoid
inv_le_invβ
Finset.prod_inv_distrib
Finset.prod_le_prod
inv_rpow
le_refl
NNReal.inner_le_Lp_mul_Lq_hasSum
Subtype.prop
NNReal.inner_le_Lp_mul_Lq_tsum
instNatCast
NNReal.rpow_sum_le_const_mul_sum_rpow
NNReal.coe_natCast
le_abs_self
abs_mul
div_eq_inv_mul
HolderTriple.ne_zero
HolderConjugate.symm
HolderTriple.inv_nonneg
HolderConjugate.inv_add_inv_eq_one
---
β Back to Index