Documentation Verification Report

MeanInequalities

πŸ“ Source: Mathlib/Analysis/MeanInequalities.lean

Statistics

MetricCount
Definitions0
TheoremsLp_add_le, inner_le_Lp_mul_Lq, inner_le_weight_mul_Lp_of_nonneg, rpow_sum_le_const_mul_sum_rpow, young_inequality, Lp_add_le, Lp_add_le_hasSum, Lp_add_le_tsum, Lp_add_le_tsum', geom_mean_le_arith_mean2_weighted, geom_mean_le_arith_mean3_weighted, geom_mean_le_arith_mean4_weighted, geom_mean_le_arith_mean_weighted, inner_le_Lp_mul_Lq, inner_le_Lp_mul_Lq_hasSum, inner_le_Lp_mul_Lq_tsum, inner_le_Lp_mul_Lq_tsum', inner_le_weight_mul_Lp, isGreatest_Lp, rpow_sum_le_const_mul_sum_rpow, summable_Lp_add, summable_mul_of_Lp_Lq, young_inequality, young_inequality_real, Lp_add_le, Lp_add_le_hasSum_of_nonneg, Lp_add_le_of_nonneg, Lp_add_le_tsum_of_nonneg, Lp_add_le_tsum_of_nonneg', arith_mean_weighted_of_constant, compact_inner_le_weight_mul_Lp_of_nonneg, geom_mean_eq_arith_mean_weighted_iff, geom_mean_eq_arith_mean_weighted_iff', geom_mean_eq_arith_mean_weighted_of_constant, geom_mean_le_arith_mean, geom_mean_le_arith_mean2_weighted, geom_mean_le_arith_mean3_weighted, geom_mean_le_arith_mean4_weighted, geom_mean_le_arith_mean_weighted, geom_mean_lt_arith_mean_weighted_iff_of_pos, geom_mean_weighted_of_constant, harm_mean_le_geom_mean, harm_mean_le_geom_mean_weighted, inner_le_Lp_mul_Lq, inner_le_Lp_mul_Lq_hasSum_of_nonneg, inner_le_Lp_mul_Lq_of_nonneg, inner_le_Lp_mul_Lq_tsum_of_nonneg, inner_le_Lp_mul_Lq_tsum_of_nonneg', inner_le_weight_mul_Lp_of_nonneg, rpow_sum_le_const_mul_sum_rpow, rpow_sum_le_const_mul_sum_rpow_of_nonneg, summable_Lp_add_of_nonneg, summable_mul_of_Lp_Lq_of_nonneg, young_inequality, young_inequality_of_nonneg
55
Total55

ENNReal

Theorems

NameKindAssumesProvesValidatesDepends On
Lp_add_le πŸ“–mathematicalReal
Real.instLE
Real.instOne
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
Finset.sum
instAddCommMonoid
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”top_add
add_top
lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
one_div
Unique.instSubsingleton
asymm
instAsymmLt
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
coe_le_coe
NNReal.Lp_add_le
Finset.sum_congr
coe_toNNReal
coe_rpow_of_nonneg
le_of_lt
one_div_pos
coe_finset_sum
inner_le_Lp_mul_Lq πŸ“–mathematicalReal.HolderConjugateENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”one_div
Unique.instSubsingleton
Real.HolderTriple.pos
asymm
instAsymmLt
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.HolderConjugate.symm
MulZeroClass.zero_mul
MulZeroClass.mul_zero
Finset.sum_eq_zero
instCanonicallyOrderedAdd
top_mul
mul_top
coe_le_coe
NNReal.inner_le_Lp_mul_Lq
Finset.sum_congr
coe_toNNReal
coe_finset_sum
coe_rpow_of_nonneg
LT.lt.le
inner_le_weight_mul_Lp_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instOne
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Finset.sum
instAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
instPowReal
Real.instSub
Real.instInv
β€”LE.le.eq_or_lt
inv_one
sub_self
rpow_zero
Finset.sum_congr
rpow_one
one_mul
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
inv_lt_one_of_one_ltβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
Unique.instSubsingleton
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
LT.lt.not_gt
instNoZeroDivisors
IsOrderedRing.toPosMulMono
MulZeroClass.zero_mul
Finset.sum_eq_zero
instCanonicallyOrderedAdd
top_mul
mul_top
coe_le_coe
NNReal.inner_le_weight_mul_Lp
LT.lt.le
eq_or_ne
coe_toNNReal
toNNReal_mul
coe_rpow_of_nonneg
coe_finset_sum
inv_nonneg
coe_mul
rpow_sum_le_const_mul_sum_rpow πŸ“–mathematicalReal
Real.instLE
Real.instOne
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instPowReal
Finset.sum
instAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
Real.instSub
β€”eq_or_lt_of_le
rpow_one
sub_self
rpow_zero
Finset.sum_congr
one_mul
Real.HolderConjugate.conjExponent
one_div_mul_cancel
Real.HolderTriple.ne_zero
Real.HolderConjugate.div_conj_eq_sub_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
one_rpow
Finset.sum_const
Nat.smul_one_eq_cast
mul_rpow_of_nonneg
Real.HolderTriple.nonneg
rpow_le_rpow
inner_le_Lp_mul_Lq
Real.HolderConjugate.symm
young_inequality πŸ“–mathematicalReal.HolderConjugateENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Distrib.toAdd
DivInvMonoid.toDiv
instDivInvMonoid
Real
instPowReal
ofReal
β€”le_trans
le_top
le_of_eq
div_eq_mul_inv
top_rpow_of_pos
Real.HolderTriple.pos
top_mul
top_add
Real.HolderConjugate.symm
add_top
coe_toNNReal
coe_mul
coe_rpow_of_nonneg
Real.HolderTriple.nonneg
ofReal.eq_1
coe_div
coe_add
coe_le_coe
NNReal.young_inequality_real

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
Lp_add_le πŸ“–mathematicalReal
Real.instLE
Real.instOne
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”eq_or_lt_of_le
Finset.sum_congr
rpow_one
Finset.sum_add_distrib
div_self
NeZero.charZero_one
RCLike.charZero_rclike
Real.HolderConjugate.conjExponent
isGreatest_Lp
Set.image_congr
add_mul
Distrib.rightDistribClass
add_le_add
addLeftMono
covariant_swap_add_of_covariant_add
Lp_add_le_hasSum πŸ“–mathematicalReal
Real.instLE
Real.instOne
HasSum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instPowReal
SummationFilter.unconditional
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”LT.lt.ne'
lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Lp_add_le_tsum
HasSum.summable
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
rpow_inv_rpow_self
one_div
rpow_self_rpow_inv
Summable.hasSum
Lp_add_le_tsum πŸ“–mathematicalReal
Real.instLE
Real.instOne
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instPowReal
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
tsum
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”lt_of_lt_of_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
one_div
rpow_inv_le_iff
le_trans
Lp_add_le
add_le_add
addLeftMono
covariant_swap_add_of_covariant_add
rpow_le_rpow_iff
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Summable.sum_le_tsum
IsOrderedRing.toIsOrderedAddMonoid
instIsOrderedRing
OrderTopology.to_orderClosedTopology
instOrderTopology
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
zero_le
instCanonicallyOrderedAdd
HasSum.summable
hasSum_of_isLUB
isLUB_ciSup
Summable.tsum_le_of_sum_le
Lp_add_le_tsum' πŸ“–mathematicalReal
Real.instLE
Real.instOne
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instPowReal
SummationFilter.unconditional
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
tsum
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Lp_add_le_tsum
geom_mean_le_arith_mean2_weighted πŸ“–mathematicalNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
Real
instPowReal
toReal
β€”Fin.sum_univ_succ
Finset.sum_congr
Finset.univ_eq_empty
Fin.isEmpty'
add_zero
Fin.prod_univ_succ
Finset.prod_congr
mul_one
geom_mean_le_arith_mean_weighted
geom_mean_le_arith_mean3_weighted πŸ“–mathematicalNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
Real
instPowReal
toReal
β€”mul_assoc
Fin.sum_univ_succ
Finset.sum_congr
Finset.univ_eq_empty
Fin.isEmpty'
add_zero
Fin.prod_univ_succ
Finset.prod_congr
mul_one
geom_mean_le_arith_mean_weighted
geom_mean_le_arith_mean4_weighted πŸ“–mathematicalNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
Real
instPowReal
toReal
β€”mul_assoc
Fin.sum_univ_succ
Finset.sum_congr
Finset.univ_eq_empty
Fin.isEmpty'
add_zero
Fin.prod_univ_succ
Finset.prod_congr
mul_one
geom_mean_le_arith_mean_weighted
geom_mean_le_arith_mean_weighted πŸ“–mathematicalFinset.sum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.prod
CommSemiring.toCommMonoid
instCommSemiringNNReal
Real
instPowReal
toReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”Finset.prod_congr
Finset.sum_congr
Real.geom_mean_le_arith_mean_weighted
coe_nonneg
Nat.cast_one
inner_le_Lp_mul_Lq πŸ“–mathematicalReal.HolderConjugateNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Real
instPowReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”eq_zero_or_pos
instCanonicallyOrderedAdd
eq
mul_comm
Real.HolderConjugate.symm
le_of_eq
Finset.sum_congr
div_rpow
one_div
inv_mul_cancelβ‚€
Real.HolderTriple.ne_zero
rpow_one
div_self
LT.lt.ne'
one_mul
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
rpow_pos
div_mul_div_comm
inner_le_Lp_mul_Lq_hasSum πŸ“–mathematicalReal.HolderConjugate
HasSum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
instPowReal
SummationFilter.unconditional
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”inner_le_Lp_mul_Lq_tsum
HasSum.summable
HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
rpow_inv_rpow_self
Real.HolderTriple.ne_zero
Real.HolderConjugate.symm
one_div
Summable.hasSum
inner_le_Lp_mul_Lq_tsum πŸ“–mathematicalReal.HolderConjugate
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
instPowReal
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
tsum
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”le_trans
inner_le_Lp_mul_Lq
mul_le_mul
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedRing.toMulPosMono
rpow_le_rpow_iff
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.HolderTriple.pos
Summable.sum_le_tsum
IsOrderedRing.toIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopology
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
zero_le
instCanonicallyOrderedAdd
Real.HolderConjugate.symm
bot_le
HasSum.summable
hasSum_of_isLUB
isLUB_ciSup
Summable.tsum_le_of_sum_le
inner_le_Lp_mul_Lq_tsum' πŸ“–mathematicalReal.HolderConjugate
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
instPowReal
SummationFilter.unconditional
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
tsum
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”inner_le_Lp_mul_Lq_tsum
inner_le_weight_mul_Lp πŸ“–mathematicalReal
Real.instLE
Real.instOne
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instPowReal
Real.instSub
Real.instInv
β€”LE.le.eq_or_lt
inv_one
sub_self
rpow_zero
Finset.sum_congr
rpow_one
one_mul
eq
mul_assoc
rpow_of_add_eq
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
sub_add_cancel
inner_le_Lp_mul_Lq
Real.HolderConjugate.symm
Real.holderConjugate_iff
inv_inv
add_sub_cancel
ne_of_gt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
LT.lt.ne'
rpow_rpow_inv
div_inv_eq_mul
mul_rpow
rpow_inv_rpow
one_div
isGreatest_Lp πŸ“–mathematicalReal.HolderConjugateIsGreatest
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Set.image
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
setOf
Real
instPowReal
instOneNNReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”eq_zero_or_pos
instCanonicallyOrderedAdd
one_div
zero_rpow
Real.HolderTriple.ne_zero
Real.HolderConjugate.symm
div_zero
Finset.sum_congr
Finset.sum_const_zero
MulZeroClass.mul_zero
add_sub_cancel_right
mul_div_cancel_left_of_imp
div_rpow
Real.HolderConjugate.mul_eq_add
rpow_sub'
div_mul_cancelβ‚€
rpow_one
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
one_mul
div_eq_iff
Unique.instSubsingleton
LT.lt.ne'
rpow_add
Real.HolderConjugate.inv_add_inv_eq_one
le_trans
inner_le_Lp_mul_Lq
mul_one
mul_le_mul_right
mulLeftMono
rpow_le_one
le_of_lt
Real.HolderTriple.one_div_pos
rpow_sum_le_const_mul_sum_rpow πŸ“–mathematicalReal
Real.instLE
Real.instOne
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Finset.card
Real.instSub
β€”eq_or_lt_of_le
rpow_one
sub_self
rpow_zero
Finset.sum_congr
one_mul
Real.HolderConjugate.conjExponent
one_div_mul_cancel
Real.HolderTriple.ne_zero
Real.HolderConjugate.div_conj_eq_sub_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
one_rpow
Finset.sum_const
Nat.smul_one_eq_cast
mul_rpow
rpow_le_rpow
inner_le_Lp_mul_Lq
Real.HolderConjugate.symm
Real.HolderTriple.nonneg
summable_Lp_add πŸ“–mathematicalReal
Real.instLE
Real.instOne
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
instPowReal
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
β€”Lp_add_le_tsum
summable_mul_of_Lp_Lq πŸ“–mathematicalReal.HolderConjugate
Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
instPowReal
SummationFilter.unconditional
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”inner_le_Lp_mul_Lq_tsum
young_inequality πŸ“–mathematicalHolderConjugateNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toAdd
instDiv
Real
instPowReal
toReal
β€”Real.young_inequality_of_nonneg
coe_nonneg
HolderConjugate.coe
young_inequality_real πŸ“–mathematicalReal.HolderConjugateNNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toAdd
instDiv
Real
instPowReal
Real.toNNReal
β€”sup_of_le_left
Real.HolderTriple.nonneg
Real.HolderConjugate.symm
young_inequality
Real.HolderConjugate.toNNReal

Real

Theorems

NameKindAssumesProvesValidatesDepends On
Lp_add_le πŸ“–mathematicalReal
instLE
instOne
instPow
Finset.sum
instAddCommMonoid
abs
lattice
instAddGroup
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
β€”abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
NNReal.coe_le_coe
NNReal.Lp_add_le
le_trans
rpow_le_rpow
Finset.sum_le_sum
zero_le_one
instZeroLEOneClass
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Finset.sum_congr
NNReal.coe_sum
Lp_add_le_hasSum_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
HasSum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instAddβ€”CanLift.prf
Pi.canLift
NNReal.canLift
NNReal.Lp_add_le_hasSum
Nat.cast_zero
zero_le
NNReal.instCanonicallyOrderedAdd
Lp_add_le_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
instPow
Finset.sum
instAddCommMonoid
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
β€”Finset.sum_congr
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Lp_add_le
Lp_add_le_tsum_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instAdd
tsum
DivInvMonoid.toDiv
instDivInvMonoid
β€”CanLift.prf
Pi.canLift
NNReal.canLift
Nat.cast_one
NNReal.Lp_add_le_tsum
Lp_add_le_tsum_of_nonneg' πŸ“–mathematicalReal
instLE
instOne
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
tsum
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
β€”Lp_add_le_tsum_of_nonneg
arith_mean_weighted_of_constant πŸ“–mathematicalFinset.sum
Real
instAddCommMonoid
instOne
instMulβ€”Finset.sum_congr
eq_or_ne
MulZeroClass.zero_mul
Finset.sum_mul
one_mul
compact_inner_le_weight_mul_Lp_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
Finset.expect
instAddCommMonoid
Algebra.toModule
NNRat
instCommSemiringNNRat
semiring
DivisionSemiring.toNNRatAlgebra
Semifield.toDivisionSemiring
Field.toSemifield
instField
RCLike.charZero_rclike
instRCLike
instMul
instPow
instSub
instInv
β€”RCLike.charZero_rclike
Finset.expect_eq_sum_div_card
div_rpow
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instIsOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
rpow_nonneg
div_mul_div_comm
rpow_add'
sub_add_cancel
NeZero.charZero_one
rpow_one
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
instIsStrictOrderedRing
inner_le_weight_mul_Lp_of_nonneg
Nat.cast_nonneg'
instZeroLEOneClass
geom_mean_eq_arith_mean_weighted_iff πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
instOne
Finset.prod
instCommMonoid
instPow
instMul
β€”left_ne_zero_of_mul
rpow_zero
Finset.sum_filter_of_ne
Finset.prod_filter_of_ne
geom_mean_eq_arith_mean_weighted_iff'
LE.le.lt_iff_ne'
Finset.sum_filter_ne_zero
geom_mean_eq_arith_mean_weighted_iff' πŸ“–mathematicalReal
instLT
instZero
Finset.sum
instAddCommMonoid
instOne
instLE
Finset.prod
instCommMonoid
instPow
instMul
β€”Finset.prod_eq_zero
zero_rpow
eq_zero_of_ne_zero_of_mul_left_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
ne_of_lt
Finset.sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonneg_iff_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
lt_of_le_of_ne
ne_of_gt
Mathlib.Tactic.Push.not_and_eq
StrictConvexOn.map_sum_eq_iff
IsStrictOrderedRing.toIsStrictOrderedModule
strictConvexOn_exp
Set.mem_univ
Finset.prod_congr
exp_mul
exp_log
Finset.sum_congr
arith_mean_weighted_of_constant
mul_comm
log_injOn_pos
exp_sum
geom_mean_eq_arith_mean_weighted_of_constant πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
instOne
Finset.prod
instCommMonoid
instPow
instMul
β€”geom_mean_weighted_of_constant
arith_mean_weighted_of_constant
geom_mean_le_arith_mean πŸ“–mathematicalReal
instLE
instZero
instLT
Finset.sum
instAddCommMonoid
instPow
Finset.prod
instCommMonoid
instInv
DivInvMonoid.toDiv
instDivInvMonoid
instMul
β€”finset_prod_rpow
rpow_nonneg
Finset.prod_congr
div_eq_mul_inv
rpow_mul
Finset.sum_congr
mul_assoc
mul_comm
geom_mean_le_arith_mean_weighted
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
le_of_lt
mul_inv_cancelβ‚€
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
instIsOrderedRing
sub_eq_zero_of_eq
geom_mean_le_arith_mean2_weighted πŸ“–mathematicalReal
instLE
instZero
instAdd
instOne
instMul
instPow
β€”NNReal.geom_mean_le_arith_mean2_weighted
geom_mean_le_arith_mean3_weighted πŸ“–mathematicalReal
instLE
instZero
instAdd
instOne
instMul
instPow
β€”NNReal.geom_mean_le_arith_mean3_weighted
geom_mean_le_arith_mean4_weighted πŸ“–mathematicalReal
instLE
instZero
instAdd
instOne
instMul
instPow
β€”NNReal.geom_mean_le_arith_mean4_weighted
geom_mean_le_arith_mean_weighted πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
instOne
Finset.prod
instCommMonoid
instPow
instMul
β€”Finset.prod_eq_zero
zero_rpow
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
ConvexOn.map_sum_le
instIsStrictOrderedRing
IsStrictOrderedRing.toIsStrictOrderedModule
convexOn_exp
Set.mem_univ
Finset.prod_congr
eq_or_lt_of_le
Mathlib.Tactic.Push.not_and_eq
rpow_zero
MulZeroClass.mul_zero
exp_zero
rpow_def_of_pos
Finset.sum_congr
MulZeroClass.zero_mul
exp_log
mul_comm
exp_sum
geom_mean_lt_arith_mean_weighted_iff_of_pos πŸ“–mathematicalReal
instLT
instZero
Finset.sum
instAddCommMonoid
instOne
instLE
Finset.prod
instCommMonoid
instPow
instMul
Finset
Finset.instMembership
β€”lt_self_iff_false
geom_mean_eq_arith_mean_weighted_iff'
arith_mean_weighted_of_constant
Finset.sum_congr
Mathlib.Tactic.Push.not_and_eq
geom_mean_le_arith_mean_weighted
le_of_lt
le_antisymm
geom_mean_weighted_of_constant πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
instOne
Finset.prod
instCommMonoid
instPow
β€”Finset.prod_congr
eq_or_ne
rpow_zero
rpow_sum_of_nonneg
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
Finset.exists_ne_zero_of_sum_ne_zero
rpow_one
harm_mean_le_geom_mean πŸ“–mathematicalFinset.Nonempty
Real
instLT
instZero
Finset.sum
instAddCommMonoid
instLE
DivInvMonoid.toDiv
instDivInvMonoid
instPow
Finset.prod
instCommMonoid
instInv
β€”harm_mean_le_geom_mean_weighted
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Finset.sum_congr
div_eq_mul_inv
Finset.sum_mul
mul_inv_cancelβ‚€
LT.lt.ne'
inv_inv
mul_inv
Finset.mul_sum
inv_mul_eq_div
div_right_comm
finset_prod_rpow
rpow_nonneg
le_of_lt
Finset.prod_congr
rpow_mul
harm_mean_le_geom_mean_weighted πŸ“–mathematicalFinset.Nonempty
Real
instLT
instZero
Finset.sum
instAddCommMonoid
instOne
instLE
instInv
DivInvMonoid.toDiv
instDivInvMonoid
Finset.prod
instCommMonoid
instPow
β€”geom_mean_le_arith_mean_weighted
le_of_lt
one_div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
Finset.prod_pos
instZeroLEOneClass
instNontrivial
rpow_pos_of_pos
inv_pos
Finset.sum_pos
instIsOrderedCancelAddMonoid
mul_pos
le_trans
inv_le_invβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Finset.prod_congr
one_div
Finset.sum_congr
inv_inv
Finset.prod_inv_distrib
Finset.prod_le_prod
IsOrderedRing.toPosMulMono
instIsOrderedRing
inv_nonneg
rpow_nonneg
inv_rpow
le_refl
inner_le_Lp_mul_Lq πŸ“–mathematicalHolderConjugateReal
instLE
Finset.sum
instAddCommMonoid
instMul
instPow
abs
lattice
instAddGroup
DivInvMonoid.toDiv
instDivInvMonoid
instOne
β€”abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
NNReal.coe_le_coe
NNReal.inner_le_Lp_mul_Lq
le_trans
Finset.sum_le_sum
instIsOrderedRing
Finset.sum_congr
NNReal.coe_sum
inner_le_Lp_mul_Lq_hasSum_of_nonneg πŸ“–mathematicalHolderConjugate
Real
instLE
instZero
HasSum
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instMulβ€”CanLift.prf
Pi.canLift
NNReal.canLift
NNReal.inner_le_Lp_mul_Lq_hasSum
Subtype.prop
inner_le_Lp_mul_Lq_of_nonneg πŸ“–mathematicalHolderConjugate
Real
instLE
instZero
Finset.sum
instAddCommMonoid
instMul
instPow
DivInvMonoid.toDiv
instDivInvMonoid
instOne
β€”Finset.sum_congr
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
inner_le_Lp_mul_Lq
inner_le_Lp_mul_Lq_tsum_of_nonneg πŸ“–mathematicalHolderConjugate
Real
instLE
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instMul
tsum
DivInvMonoid.toDiv
instDivInvMonoid
instOne
β€”CanLift.prf
Pi.canLift
NNReal.canLift
Nat.cast_one
NNReal.inner_le_Lp_mul_Lq_tsum
inner_le_Lp_mul_Lq_tsum_of_nonneg' πŸ“–mathematicalHolderConjugate
Real
instLE
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
tsum
instMul
DivInvMonoid.toDiv
instDivInvMonoid
instOne
β€”inner_le_Lp_mul_Lq_tsum_of_nonneg
inner_le_weight_mul_Lp_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
Finset.sum
instAddCommMonoid
instMul
instPow
instSub
instInv
β€”CanLift.prf
Pi.canLift
NNReal.canLift
Nat.cast_one
Finset.sum_congr
NNReal.inner_le_weight_mul_Lp
rpow_sum_le_const_mul_sum_rpow πŸ“–mathematicalReal
instLE
instOne
instPow
Finset.sum
instAddCommMonoid
abs
lattice
instAddGroup
instMul
instNatCast
Finset.card
instSub
β€”abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
NNReal.coe_le_coe
NNReal.rpow_sum_le_const_mul_sum_rpow
Finset.sum_congr
NNReal.coe_sum
NNReal.coe_natCast
rpow_sum_le_const_mul_sum_rpow_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
instPow
Finset.sum
instAddCommMonoid
instMul
instNatCast
Finset.card
instSub
β€”Finset.sum_congr
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
rpow_sum_le_const_mul_sum_rpow
summable_Lp_add_of_nonneg πŸ“–mathematicalReal
instLE
instOne
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instAddβ€”Lp_add_le_tsum_of_nonneg
summable_mul_of_Lp_Lq_of_nonneg πŸ“–mathematicalHolderConjugate
Real
instLE
instZero
Summable
instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instPow
SummationFilter.unconditional
instMulβ€”inner_le_Lp_mul_Lq_tsum_of_nonneg
young_inequality πŸ“–mathematicalHolderConjugateReal
instLE
instMul
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instPow
abs
lattice
instAddGroup
β€”le_abs_self
abs_mul
instIsOrderedRing
young_inequality_of_nonneg
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
young_inequality_of_nonneg πŸ“–mathematicalReal
instLE
instZero
HolderConjugate
instMul
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instPow
β€”div_eq_inv_mul
mul_inv_cancelβ‚€
HolderTriple.ne_zero
rpow_one
HolderConjugate.symm
geom_mean_le_arith_mean2_weighted
HolderTriple.inv_nonneg
rpow_nonneg
HolderConjugate.inv_add_inv_eq_one

---

← Back to Index