Documentation Verification Report

Spectrum

πŸ“ Source: Mathlib/Analysis/Normed/Algebra/Spectrum.lean

Statistics

MetricCount
DefinitionstoContinuousLinearMap, equivAlgHom, spectralRadius
3
Theoremscoe_toContinuousLinearMap, instContinuousLinearMapClassOfAlgHomClass, norm_apply_le_self, norm_apply_le_self_mul_norm_one, toContinuousLinearMap_norm, spectralRadius_mem_spectrum, compactSpace, spectralRadius_mem_spectrum, spectralRadius_mem_spectrum_or, nnreal_iff_spectralRadius_le, spectralRadius_eq, frontier_spectrum, frontier_subset_frontier, isUnit_of_isUnit_val_of_eventually, spectrum_eq_of_isPreconnected_compl, spectrum_isBounded_connectedComponentIn, spectrum_sUnion_connectedComponentIn, equivAlgHom_coe, equivAlgHom_symm_coe, instCompactSpace, instCompactSpaceNNReal, isCompact, isCompact_nnreal, of_subsingleton, coe_le_norm_of_mem, eventually_isUnit_resolvent, exists_nnnorm_eq_spectralRadius_of_nonempty, exp_mem_exp, hasFPowerSeriesOnBall_inverse_one_sub_smul, instCompactSpace, instCompactSpaceNNReal, isBounded, isClosed, isCompact, isCompact_nnreal, isOpen_resolventSet, isUnit_one_sub_smul_of_lt_inv_radius, le_nnnorm_of_mem, mem_resolventSet_of_norm_lt, mem_resolventSet_of_norm_lt_mul, mem_resolventSet_of_spectralRadius_lt, norm_le_norm_mul_of_mem, norm_le_norm_of_mem, resolvent_isBigO_inv, resolvent_tendsto_cobounded, spectralRadius_le_liminf_pow_nnnorm_pow_one_div, spectralRadius_le_nnnorm, spectralRadius_le_pow_nnnorm_pow_one_div, spectralRadius_lt_of_forall_lt_of_nonempty, spectralRadius_one, spectralRadius_pow_le, spectralRadius_pow_le', spectralRadius_zero, subset_closedBall_norm, subset_closedBall_norm_mul, upperHemicontinuous_quasispectrum, upperHemicontinuous_quasispectrum_nnreal, upperHemicontinuous_spectrum, upperHemicontinuous_spectrum_nnreal
59
Total62

AlgHom

Definitions

NameCategoryTheorems
toContinuousLinearMap πŸ“–CompOp
2 mathmath: coe_toContinuousLinearMap, toContinuousLinearMap_norm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toContinuousLinearMap πŸ“–mathematicalβ€”DFunLike.coe
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedRing.toSeminormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedAlgebra.toNormedSpace
ContinuousLinearMap.funLike
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
toContinuousLinearMap
AlgHom
Semifield.toCommSemiring
Ring.toSemiring
NormedRing.toRing
NormedAlgebra.toAlgebra
Algebra.id
funLike
β€”β€”
instContinuousLinearMapClassOfAlgHomClass πŸ“–mathematicalβ€”ContinuousLinearMapClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedAlgebra.toNormedSpace
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
β€”AlgHomClass.linearMapClass
AddMonoidHomClass.continuous_of_bound
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
instNonUnitalAlgHomClassOfAlgHomClass
spectrum.norm_le_norm_mul_of_mem
apply_mem_spectrum
IsLocalRing.toNontrivial
Field.instIsLocalRing
mul_comm
norm_apply_le_self πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NormedField.toNorm
DFunLike.coe
NormedRing.toNorm
β€”spectrum.norm_le_norm_of_mem
apply_mem_spectrum
IsLocalRing.toNontrivial
Field.instIsLocalRing
norm_apply_le_self_mul_norm_one πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
NormedField.toNorm
DFunLike.coe
Real.instMul
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
β€”spectrum.norm_le_norm_mul_of_mem
apply_mem_spectrum
IsLocalRing.toNontrivial
Field.instIsLocalRing
toContinuousLinearMap_norm πŸ“–mathematicalβ€”Norm.norm
StrongDual
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NormedRing.toSeminormedRing
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedAlgebra.toNormedSpace
ContinuousLinearMap.hasOpNorm
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedField.toNormedSpace
RingHom.id
Semiring.toNonAssocSemiring
toContinuousLinearMap
Real
Real.instOne
β€”ContinuousLinearMap.opNorm_eq_of_bounds
zero_le_one
Real.instZeroLEOneClass
spectrum.norm_le_norm_of_mem
apply_mem_spectrum
algHomClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
one_mul
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
NormOneClass.norm_one
NormedDivisionRing.to_normOneClass
mul_one

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
spectralRadius_mem_spectrum πŸ“–mathematicalSet.Nonempty
Real
spectrum
Real.instCommSemiring
NormedRing.toRing
NormedAlgebra.toAlgebra
Real.normedField
NormedRing.toSeminormedRing
SpectrumRestricts
NNReal
instSemifield
Field.toSemifield
Real.instField
instAlgebraOfReal
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.id
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpace
ContinuousMap.instFunLike
ContinuousMap.realToNNReal
Set
Set.instMembership
instCommSemiringNNReal
ENNReal.toNNReal
spectralRadius
β€”spectrum.exists_nnnorm_eq_spectralRadius_of_nonempty
instProperSpaceReal
ENNReal.toNNReal_coe
spectrum.algebraMap_mem_iff
instIsScalarTowerOfReal
IsScalarTower.left
algebraMap_eq_coe
zero_le_coe
SpectrumRestricts.rightInvOn
Real.instIsOrderedAddMonoid

QuasispectrumRestricts

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace πŸ“–mathematicalQuasispectrumRestricts
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
CompactSpace
Set.Elem
quasispectrum
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isCompact_iff_compactSpace
IsCompact.image
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
image

Real

Theorems

NameKindAssumesProvesValidatesDepends On
spectralRadius_mem_spectrum πŸ“–mathematicalSet.Nonempty
Real
spectrum
instCommSemiring
NormedRing.toRing
NormedAlgebra.toAlgebra
normedField
NormedRing.toSeminormedRing
SpectrumRestricts
NNReal
NNReal.instSemifield
Field.toSemifield
instField
NNReal.instAlgebraOfReal
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.id
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
NNReal.instTopologicalSpace
ContinuousMap.instFunLike
ContinuousMap.realToNNReal
Set
Set.instMembership
ENNReal.toReal
spectralRadius
β€”NNReal.spectralRadius_mem_spectrum
spectralRadius_mem_spectrum_or πŸ“–mathematicalSet.Nonempty
Real
spectrum
instCommSemiring
NormedRing.toRing
NormedAlgebra.toAlgebra
normedField
NormedRing.toSeminormedRing
Set
Set.instMembership
ENNReal.toReal
spectralRadius
instNeg
β€”spectrum.exists_nnnorm_eq_spectralRadius_of_nonempty
instProperSpaceReal
neg_neg
abs_choice

SpectrumRestricts

Theorems

NameKindAssumesProvesValidatesDepends On
nnreal_iff_spectralRadius_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
spectralRadius
Real
Real.normedField
ENNReal.ofNNReal
SpectrumRestricts
NNReal
NNReal.instSemifield
Field.toSemifield
Real.instField
NNReal.instAlgebraOfReal
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.id
Real.instCommSemiring
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal.instTopologicalSpace
ContinuousMap.instFunLike
ContinuousMap.realToNNReal
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
NNReal.toReal
β€”Set.mem_Icc
abs_le
Real.instIsOrderedAddMonoid
Real.norm_eq_abs
coe_nnnorm
NNReal.coe_le_coe
ENNReal.coe_le_coe
LE.le.trans
le_iSupβ‚‚
nnreal_iff
iSupβ‚‚_le
Set.singleton_sub
Set.image_congr
spectrum.singleton_sub_eq
CanLift.prf
NNReal.canLift
NNReal.coe_sub
NNReal.nnnorm_eq
ENNReal.coe_sub
ENNReal.instOrderedSub
ENNReal.instCanonicallyOrderedAdd
iSup_congr_Prop
iSup_exists
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
spectralRadius_eq πŸ“–mathematicalSpectrumRestricts
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectralRadiusβ€”spectralRadius.eq_1
Isometry.nnnorm_map_of_map_zero
algebraMap_isometry
NormedDivisionRing.to_normOneClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
le_antisymm
iSupβ‚‚_le
Eq.trans_le
le_iSupβ‚‚
spectrum.algebraMap_mem_iff
algebraMap_image

Subalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
frontier_spectrum πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
SetLike.instMembership
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
SubringClass.toNormedRing
NormedAlgebra.toAlgebra
SubringClass.toSeminormedRing
NormedRing.toSeminormedRing
SubalgebraClass.toNormedAlgebra
β€”IsClosed.completeSpace_coe
Set.mem_diff
IsOpen.frontier_eq
IsClosed.isOpen_compl
spectrum.isClosed
frontier_compl
Set.mem_compl_iff
spectrum.notMem_iff
isUnit_of_isUnit_val_of_eventually
SubringClass.addSubgroupClass
Filter.map_mono
Filter.Tendsto.eq_1
ContinuousAt.eq_1
ContinuousAt.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Continuous.continuousAt
continuous_algebraMap
SMulMemClass.continuousSMul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuousAt_const
Filter.eventually_map
Filter.Eventually.filter_mono
inf_le_right
Filter.NeBot.map
mem_closure_iff_clusterPt
frontier_subset_frontier πŸ“–mathematicalβ€”Set
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
SetLike.instMembership
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
SubringClass.toNormedRing
NormedAlgebra.toAlgebra
SubringClass.toSeminormedRing
NormedRing.toSeminormedRing
SubalgebraClass.toNormedAlgebra
β€”frontier_eq_closure_inter_closure
IsClosed.closure_eq
spectrum.isClosed
Set.subset_inter
frontier_spectrum
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
closure_mono
Set.compl_subset_compl
spectrum.subset_subalgebra
isUnit_of_isUnit_val_of_eventually πŸ“–β€”IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SetLike.instMembership
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
Filter.Eventually
SubringClass.toNormedRing
β€”β€”SubringClass.toSubsemiringClass
Ring.inverse_unit
Filter.Tendsto.comp
ContinuousAt.tendsto
NormedRing.inverse_continuousAt
instHasSummableGeomSeriesOfCompleteSpace
continuousAt_subtype_val
Filter.map_mono
IsClosed.mem_of_tendsto
Filter.map_neBot
Filter.eventually_map
Filter.Eventually.mono
IsUnit.map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsUnit.unit_spec
SubalgebraClass.val.eq_1
Units.mul_eq_one_iff_inv_eq
IsUnit.mul_val_inv
IsUnit.val_inv_mul
spectrum_eq_of_isPreconnected_compl πŸ“–mathematicalIsPreconnected
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
Compl.compl
Set
Set.instCompl
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
SetLike.instMembership
SubringClass.toNormedRing
SubringClass.toSeminormedRing
SubalgebraClass.toNormedAlgebra
β€”Set.eq_empty_of_forall_notMem
NormedSpace.unbounded_univ
IsLocalRing.toNontrivial
Field.instIsLocalRing
Set.mem_diff
Bornology.IsBounded.union
spectrum.isBounded
spectrum_isBounded_connectedComponentIn
IsPreconnected.connectedComponentIn
Set.union_compl_self
spectrum_sUnion_connectedComponentIn
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.union_empty
spectrum_isBounded_connectedComponentIn πŸ“–mathematicalSet
Set.instMembership
spectrum
SetLike.instMembership
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
SubringClass.toNormedRing
NormedAlgebra.toAlgebra
SubringClass.toSeminormedRing
NormedRing.toSeminormedRing
SubalgebraClass.toNormedAlgebra
Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
connectedComponentIn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Compl.compl
Set.instCompl
β€”connectedComponentIn_eq_empty
IsClosed.completeSpace_coe
spectrum_sUnion_connectedComponentIn
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_biUnion_of_mem
Set.mem_diff_of_mem
Set.subset_union_right
Bornology.IsBounded.subset
spectrum.isBounded
spectrum_sUnion_connectedComponentIn πŸ“–mathematicalβ€”spectrum
SetLike.instMembership
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
SubringClass.toNormedRing
NormedAlgebra.toAlgebra
SubringClass.toSeminormedRing
NormedRing.toSeminormedRing
SubalgebraClass.toNormedAlgebra
Set
Set.instUnion
Set.iUnion
Set.instMembership
Set.instSDiff
connectedComponentIn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Compl.compl
Set.instCompl
β€”IsClosed.completeSpace_coe
IsClosed.closure_eq
spectrum.isClosed
closure_eq_interior_union_frontier
Set.union_diff_distrib
Set.diff_eq_empty
frontier_spectrum
Set.diff_eq_compl_inter
Set.union_empty
IsOpen.inter
IsClosed.isOpen_compl
isOpen_interior
isClopen_preimage_val
HasSubset.Subset.trans
Set.instIsTransSubset
frontier_inter_subset
frontier_compl
Set.union_subset
Set.inter_subset_left
Set.inter_subset_inter_right
frontier_subset_frontier
Set.inter_subset_right
Set.disjoint_of_subset_left
Disjoint.frontier_left
disjoint_compl_right
IsClopen.biUnion_connectedComponentIn
Set.diff_subset_compl
SubringClass.toSubsemiringClass
Set.union_diff_cancel
spectrum.subset_subalgebra

WeakDual.CharacterSpace

Definitions

NameCategoryTheorems
equivAlgHom πŸ“–CompOp
3 mathmath: compContinuousMap_apply, equivAlgHom_coe, equivAlgHom_symm_coe

Theorems

NameKindAssumesProvesValidatesDepends On
equivAlgHom_coe πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
Ring.toSemiring
NormedRing.toRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Algebra.id
AlgHom.funLike
Equiv
Set.Elem
WeakDual
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalSemiring.toContinuousAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Algebra.toSMul
Ring.uniformContinuousConstSMul
NormedCommRing.toNormedRing
SeminormedAddCommGroup.to_isUniformAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
IsTopologicalSemiring.toContinuousMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NormedSpace.toModule
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
NormedAlgebra.toNormedSpace
WeakDual.characterSpace
EquivLike.toFunLike
Equiv.instEquivLike
equivAlgHom
instFunLike
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul
equivAlgHom_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
WeakDual
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalSemiring.toContinuousAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Algebra.toSMul
Algebra.id
Ring.uniformContinuousConstSMul
NormedRing.toRing
NormedCommRing.toNormedRing
SeminormedAddCommGroup.to_isUniformAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
IsTopologicalSemiring.toContinuousMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NormedSpace.toModule
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
NormedAlgebra.toNormedSpace
NormedRing.toSeminormedRing
WeakDual.characterSpace
instFunLike
Equiv
AlgHom
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NormedAlgebra.toAlgebra
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivAlgHom
AlgHom.funLike
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
UniformContinuousConstSMul.to_continuousConstSMul
Ring.uniformContinuousConstSMul
SeminormedAddCommGroup.to_isUniformAddGroup
IsTopologicalSemiring.toContinuousMul

(root)

Definitions

NameCategoryTheorems
spectralRadius πŸ“–CompOp
24 mathmath: IsStarNormal.spectralRadius_eq_nnnorm, spectrum.SpectralRadius.of_subsingleton, spectrum.spectralRadius_le_liminf_pow_nnnorm_pow_one_div, spectrum.spectralRadius_lt_of_forall_lt, spectrum.spectralRadius_one, spectrum.gelfand_formula, Real.spectralRadius_mem_spectrum, spectrum.spectralRadius_lt_of_forall_lt_of_nonempty, spectrum.pow_nnnorm_pow_one_div_tendsto_nhds_spectralRadius, IsSelfAdjoint.toReal_spectralRadius_complex_eq_norm, Real.spectralRadius_mem_spectrum_or, spectrum.spectralRadius_pow_le, spectrum.limsup_pow_nnnorm_pow_one_div_le_spectralRadius, NNReal.spectralRadius_mem_spectrum, SpectrumRestricts.spectralRadius_eq, spectrum.exists_nnnorm_eq_spectralRadius_of_nonempty, IsSelfAdjoint.spectralRadius_eq_nnnorm, spectrum.pow_norm_pow_one_div_tendsto_nhds_spectralRadius, spectrum.spectralRadius_pow_le', spectrum.spectralRadius_le_nnnorm, IsSelfAdjoint.toReal_spectralRadius_eq_norm, spectrum.exists_nnnorm_eq_spectralRadius, spectrum.spectralRadius_le_pow_nnnorm_pow_one_div, spectrum.spectralRadius_zero

Theorems

NameKindAssumesProvesValidatesDepends On
upperHemicontinuous_quasispectrum πŸ“–mathematicalβ€”UpperHemicontinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
quasispectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NonUnitalNormedRing.toNonUnitalRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
β€”IsScalarTower.left
Unitization.quasispectrum_eq_spectrum_inr
AlgEquiv.spectrum_eq
AlgEquiv.instAlgEquivClass
UpperHemicontinuous.comp
upperHemicontinuous_spectrum
WithLp.instCompleteSpace
complete_of_proper
Isometry.continuous
WithLp.unitization_isometry_inr
upperHemicontinuous_quasispectrum_nnreal πŸ“–mathematicalβ€”UpperHemicontinuous
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NNReal.instTopologicalSpace
quasispectrum
instCommSemiringNNReal
NonUnitalNormedRing.toNonUnitalRing
NNReal.instModuleOfReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
β€”Isometry.isClosedEmbedding
NNReal.instCompleteSpace
isometry_subtype_coe
quasispectrum.preimage_algebraMap
NNReal.instIsScalarTowerOfReal
IsScalarTower.left
UpperHemicontinuous.isInducing_comp
upperHemicontinuous_quasispectrum
instProperSpaceReal
upperHemicontinuous_spectrum πŸ“–mathematicalβ€”UpperHemicontinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
β€”upperHemicontinuous_iff
UpperHemicontinuousAt.of_sequences
FirstCountableTopology.nhds_generated_countable
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
PseudoEMetricSpace.pseudoMetrizableSpace
IsCompact.isSeqCompact
ProperSpace.isCompact_closedBall
Filter.mp_mem
Metric.closedBall_mem_nhds
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.univ_mem'
HasSubset.Subset.trans
Set.instIsTransSubset
spectrum.subset_closedBall_norm_mul
Metric.closedBall_subset_closedBall
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
LE.le.trans
norm_le_norm_add_norm_sub'
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
dist_eq_norm
norm_nonneg
IsClosed.mem_of_tendsto
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
nonunits.isClosed
instHasSummableGeomSeriesOfCompleteSpace
Filter.Tendsto.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Filter.Tendsto.comp
Continuous.tendsto
continuous_algebraMap
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Filter.Eventually.of_forall
upperHemicontinuous_spectrum_nnreal πŸ“–mathematicalβ€”UpperHemicontinuous
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NormedRing.toSeminormedRing
NNReal.instTopologicalSpace
spectrum
instCommSemiringNNReal
NormedRing.toRing
NNReal.instAlgebraOfReal
Ring.toSemiring
NormedAlgebra.toAlgebra
Real
Real.normedField
β€”Isometry.isClosedEmbedding
NNReal.instCompleteSpace
isometry_subtype_coe
UpperHemicontinuous.isInducing_comp
upperHemicontinuous_spectrum
instProperSpaceReal

quasispectrum

Theorems

NameKindAssumesProvesValidatesDepends On
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
Set.Elem
quasispectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NonUnitalNormedRing.toNonUnitalRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”isCompact_iff_compactSpace
isCompact
instCompactSpaceNNReal πŸ“–mathematicalβ€”CompactSpace
Set.Elem
NNReal
quasispectrum
instCommSemiringNNReal
NonUnitalNormedRing.toNonUnitalRing
NNReal.instModuleOfReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
instTopologicalSpaceSubtype
Set
Set.instMembership
NNReal.instTopologicalSpace
β€”isCompact_iff_compactSpace
preimage_algebraMap
NNReal.instIsScalarTowerOfReal
IsScalarTower.left
Topology.IsClosedEmbedding.isCompact_preimage
IsClosed.isClosedEmbedding_subtypeVal
isClosed_nonneg
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isCompact πŸ“–mathematicalβ€”IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
quasispectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NonUnitalNormedRing.toNonUnitalRing
NormedSpace.toModule
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
β€”IsScalarTower.left
Unitization.quasispectrum_eq_spectrum_inr'
AlgEquiv.spectrum_eq
AlgEquiv.instAlgEquivClass
spectrum.isCompact
WithLp.instCompleteSpace
complete_of_proper
isCompact_nnreal πŸ“–mathematicalβ€”IsCompact
NNReal
NNReal.instTopologicalSpace
quasispectrum
instCommSemiringNNReal
NonUnitalNormedRing.toNonUnitalRing
NNReal.instModuleOfReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NormedSpace.toModule
Real
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
β€”isCompact_iff_compactSpace
instCompactSpaceNNReal

spectrum

Theorems

NameKindAssumesProvesValidatesDepends On
coe_le_norm_of_mem πŸ“–mathematicalNNReal
Set
Set.instMembership
spectrum
instCommSemiringNNReal
NormedRing.toRing
NNReal.instAlgebraOfReal
Ring.toSemiring
NormedAlgebra.toAlgebra
Real
Real.normedField
NormedRing.toSeminormedRing
Real.instLE
NNReal.toReal
Norm.norm
NormedRing.toNorm
β€”NNReal.coe_mono
le_nnnorm_of_mem
eventually_isUnit_resolvent πŸ“–mathematicalβ€”Filter.Eventually
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
resolvent
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”Filter.HasBasis.eventually_iff
Filter.HasBasis.cobounded_of_norm
Filter.atTop_basis_Ioi
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
instNoMaxOrderOfNontrivial
Real.instNontrivial
isUnit_resolvent
mem_resolventSet_of_norm_lt_mul
exists_nnnorm_eq_spectralRadius_of_nonempty πŸ“–mathematicalSet.Nonempty
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Set
Set.instMembership
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectralRadius
β€”IsCompact.exists_isMaxOn
instClosedIciTopology
OrderTopology.to_orderClosedTopology
NNReal.instOrderTopology
isCompact
Continuous.continuousOn
continuous_nnnorm
le_antisymm
le_iSupβ‚‚
iSupβ‚‚_le
exp_mem_exp πŸ“–mathematicalSet
Set.instMembership
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
NormedSpace.exp
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
NonUnitalSeminormedRing.toIsTopologicalRing
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
NormedCommRing.toNormedRing
NormedField.toNormedCommRing
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
β€”RCLike.charZero_rclike
NonUnitalSeminormedRing.toIsTopologicalRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
NormedSpace.algebraMap_exp_comm
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
RCLike.toCompleteSpace
NormedSpace.exp_add_of_commute
Algebra.commutes
sub_add_cancel
Summable.of_norm_bounded_eventually
Real.summable_pow_div_factorial
Filter.mp_mem
Filter.eventually_cofinite_ne
Filter.univ_mem'
norm_smul
NormedSpace.toNormSMulClass
mul_comm
norm_inv
RCLike.norm_natCast
div_eq_mul_inv
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Real.instIsOrderedRing
IsOrderedRing.toPosMulMono
norm_nonneg
norm_pow_le'
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
Nat.factorial_pos
Nat.mono_cast
Nat.factorial_le
pow_succ'
mul_smul_comm
Algebra.to_smulCommClass
Summable.tsum_mul_left
IsTopologicalRing.toIsTopologicalSemiring
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
pow_succ
Algebra.smul_mul_assoc
Summable.tsum_mul_right
NormedSpace.exp_eq_tsum
Nat.cast_one
inv_one
pow_zero
one_smul
Summable.tsum_eq_zero_add
SeminormedAddCommGroup.toIsTopologicalAddGroup
NormedSpace.expSeries_summable'
mem_iff
IsUnit.sub_iff
one_mul
sub_mul
Commute.isUnit_mul_iff
sub_eq_iff_eq_add'
not_iff_not
hasFPowerSeriesOnBall_inverse_one_sub_smul πŸ“–mathematicalβ€”HasFPowerSeriesOnBall
NonUnitalNormedRing.toNormedAddCommGroup
NonUnitalNormedCommRing.toNonUnitalNormedRing
NormedCommRing.toNonUnitalNormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
NormedField.toNormedSpace
NormedRing.toNonUnitalNormedRing
NormedAlgebra.toNormedSpace
NormedRing.toSeminormedRing
Ring.inverse
Semiring.toMonoidWithZero
Ring.toSemiring
NormedRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
SeminormedRing.toRing
NormedAlgebra.toAlgebra
ContinuousMultilinearMap.mkPiRing
Fin.fintype
EuclideanDomain.toCommRing
Field.toEuclideanDomain
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
IsTopologicalSemiring.toContinuousMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNormedCommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
CommSemiring.toSemiring
CommRing.toCommSemiring
Module.toDistribMulAction
NormedSpace.toIsBoundedSMul
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
Monoid.toNatPow
ENNReal
ENNReal.instInv
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
β€”IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ENNReal.le_of_forall_nnreal_lt
FormalMultilinearSeries.le_radius_of_bound_nnreal
norm_toNNReal
ContinuousMultilinearMap.norm_mkPiRing
pow_zero
mul_one
le_imp_le_of_le_of_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
NNReal.mulLeftMono
nnnorm_pow_le'
le_refl
le_max_left
pow_succ'
MulZeroClass.zero_mul
NNReal.instCanonicallyOrderedAdd
mul_comm
pow_le_one'
LT.lt.le
NNReal.lt_inv_iff_mul_lt
ENNReal.coe_lt_coe
ENNReal.coe_inv
ENNReal.inv_pos
ENNReal.coe_ne_top
nnnorm_eq_zero
smul_zero
norm_zero
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Metric.eball_coe
coe_nnnorm
Real.lt_toNNReal_iff_coe_lt
Real.toNNReal_one
nnnorm_smul
NormedSpace.toNormSMulClass
Finset.prod_const
Fintype.card_fin
IsScalarTower.right
Algebra.to_smulCommClass
zero_add
Summable.hasSum_iff
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
summable_geometric_of_norm_lt_one
NormedRing.inverse_one_sub
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
Set.Elem
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
β€”isCompact_iff_compactSpace
isCompact
instCompactSpaceNNReal πŸ“–mathematicalβ€”CompactSpace
Set.Elem
NNReal
spectrum
instCommSemiringNNReal
NormedRing.toRing
NNReal.instAlgebraOfReal
Ring.toSemiring
NormedAlgebra.toAlgebra
Real
Real.normedField
NormedRing.toSeminormedRing
instTopologicalSpaceSubtype
Set
Set.instMembership
NNReal.instTopologicalSpace
β€”isCompact_iff_compactSpace
preimage_algebraMap
NNReal.instIsScalarTowerOfReal
IsScalarTower.left
Topology.IsClosedEmbedding.isCompact_preimage
IsClosed.isClosedEmbedding_subtypeVal
isClosed_nonneg
instHasSolidNormReal
Real.instIsOrderedAddMonoid
isBounded πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”Bornology.IsBounded.subset
Metric.isBounded_closedBall
subset_closedBall_norm_mul
isClosed πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”IsOpen.isClosed_compl
isOpen_resolventSet
isCompact πŸ“–mathematicalβ€”IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”Metric.isCompact_of_isClosed_isBounded
isClosed
isBounded
isCompact_nnreal πŸ“–mathematicalβ€”IsCompact
NNReal
NNReal.instTopologicalSpace
spectrum
instCommSemiringNNReal
NormedRing.toRing
NNReal.instAlgebraOfReal
Ring.toSemiring
NormedAlgebra.toAlgebra
Real
Real.normedField
NormedRing.toSeminormedRing
β€”isCompact_iff_compactSpace
instCompactSpaceNNReal
isOpen_resolventSet πŸ“–mathematicalβ€”IsOpen
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
resolventSet
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”IsOpen.preimage
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
continuous_algebraMap
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuous_const
Units.isOpen
instHasSummableGeomSeriesOfCompleteSpace
isUnit_one_sub_smul_of_lt_inv_radius πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
NontriviallyNormedField.toNormedField
ENNReal.instInv
spectralRadius
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NonUnitalNormedRing.toNormedAddCommGroup
NormedRing.toNonUnitalNormedRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
SeminormedRing.toRing
β€”zero_smul
sub_zero
Units.smul_def
Algebra.algebraMap_eq_smul_one
mem_resolventSet_iff
mem_resolventSet_of_spectralRadius_lt
Units.val_inv_eq_inv_val
nnnorm_inv
ENNReal.coe_inv
nnnorm_ne_zero_iff
Units.val_mk0
ENNReal.lt_inv_iff_lt_inv
inv_inv
IsUnit.smul_sub_iff_sub_inv_smul
Units.instIsScalarTower
IsScalarTower.right
Units.smulCommClass_left
Algebra.to_smulCommClass
le_nnnorm_of_mem πŸ“–mathematicalNNReal
Set
Set.instMembership
spectrum
instCommSemiringNNReal
NormedRing.toRing
NNReal.instAlgebraOfReal
Ring.toSemiring
NormedAlgebra.toAlgebra
Real
Real.normedField
NormedRing.toSeminormedRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
β€”Real.le_norm_self
norm_le_norm_of_mem
mem_resolventSet_of_norm_lt πŸ“–mathematicalReal
Real.instLT
Norm.norm
NormedRing.toNorm
NormedField.toNorm
Set
Set.instMembership
resolventSet
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”mem_resolventSet_of_norm_lt_mul
NormOneClass.norm_one
mul_one
mem_resolventSet_of_norm_lt_mul πŸ“–mathematicalReal
Real.instLT
Real.instMul
Norm.norm
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
NormedRing.toRing
NormedField.toNorm
Set
Set.instMembership
resolventSet
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
β€”resolventSet.eq_1
Set.mem_setOf_eq
Algebra.algebraMap_eq_smul_one
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
ne_zero_of_norm_ne_zero
LT.lt.ne'
LE.le.trans_lt
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
norm_neg
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Units.val_inv_eq_inv_val
norm_algebraMap
norm_inv
mul_inv_rev
inv_inv
mul_inv_lt_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_pos
norm_pos_iff
one_ne_zero
NeZero.one
sub_eq_add_neg
instHasSummableGeomSeriesOfCompleteSpace
Units.isUnit
mem_resolventSet_of_spectralRadius_lt πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
spectralRadius
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Set
Set.instMembership
resolventSet
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
β€”LT.lt.not_ge
le_iSupβ‚‚
norm_le_norm_mul_of_mem πŸ“–mathematicalSet
Set.instMembership
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Real
Real.instLE
Norm.norm
NormedField.toNorm
Real.instMul
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”le_of_not_gt
mem_resolventSet_of_norm_lt_mul
norm_le_norm_of_mem πŸ“–mathematicalSet
Set.instMembership
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Real
Real.instLE
Norm.norm
NormedField.toNorm
NormedRing.toNorm
β€”le_of_not_gt
mem_resolventSet_of_norm_lt
resolvent_isBigO_inv πŸ“–mathematicalβ€”Asymptotics.IsBigO
NormedRing.toNorm
NormedField.toNorm
NontriviallyNormedField.toNormedField
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
resolvent
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
β€”map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
NormedDivisionRing.to_normOneClass
Asymptotics.IsBigO.comp_tendsto
NormedRing.inverse_one_sub_norm
instHasSummableGeomSeriesOfCompleteSpace
zero_smul
Filter.Tendsto.smul_const
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
Filter.tendsto_invβ‚€_cobounded
Filter.mp_mem
Bornology.isBounded_singleton
Filter.univ_mem'
CanLift.prf
instCanLiftUnitsValIsUnit
Ne.isUnit
Units.val_inv_eq_inv_val
inv_smul_smulβ‚€
IsLocalRing.toNontrivial
Field.instIsLocalRing
units_smul_resolvent_self
Asymptotics.IsBigO.of_norm_right
norm_inv
mul_one
Asymptotics.IsBigO.smul
NormedSpace.toNormSMulClass
Asymptotics.IsBigO.norm_right
Asymptotics.isBigO_refl
resolvent_tendsto_cobounded πŸ“–mathematicalβ€”Filter.Tendsto
resolvent
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Bornology.cobounded
PseudoMetricSpace.toBornology
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Asymptotics.IsBigO.trans_tendsto
resolvent_isBigO_inv
Filter.tendsto_invβ‚€_cobounded
spectralRadius_le_liminf_pow_nnnorm_pow_one_div πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
spectralRadius
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
Real
ENNReal.instPowReal
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”ENNReal.le_of_forall_lt_one_mul_le
MulZeroClass.zero_mul
one_div
ENNReal.instCanonicallyOrderedAdd
Filter.liminf_eq_iSup_iInf_of_nat'
ENNReal.mul_le_iff_le_inv
LT.lt.ne
LT.lt.trans_le
le_top
mul_comm
ENNReal.iSup_mul
ENNReal.iInf_mul
Nat.cast_add
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
instIsEmptyFalse
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
ENNReal.eventually_pow_one_div_le
ENNReal.coe_ne_top
inv_one
ENNReal.inv_lt_inv
le_trans
le_iInf
LE.le.trans
spectralRadius_le_pow_nnnorm_pow_one_div
Nat.cast_one
le_imp_le_of_le_of_le
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_refl
le_iSup
spectralRadius_le_nnnorm πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
spectralRadius
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
β€”iSupβ‚‚_le
norm_le_norm_of_mem
spectralRadius_le_pow_nnnorm_pow_one_div πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
spectralRadius
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Real
ENNReal.instPowReal
ENNReal.ofNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNonUnitalSeminormedRing
NormedRing.toNonUnitalNormedRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instAdd
Real.instNatCast
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”iSupβ‚‚_le
Polynomial.aeval_monomial
Algebra.algebraMap_eq_smul_one
one_smul
one_mul
Polynomial.eval_monomial
subset_polynomial_aeval
norm_toNNReal
nnnorm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
Real.toNNReal_mul
norm_nonneg
ENNReal.coe_mono
Real.toNNReal_mono
norm_le_norm_mul_of_mem
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Nat.succ_pos'
one_div
ENNReal.pow_rpow_inv_natCast
ne_of_gt
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_succ
ENNReal.coe_mul_rpow
ENNReal.monotone_rpow_of_nonneg
LT.lt.le
one_div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
spectralRadius_lt_of_forall_lt_of_nonempty πŸ“–mathematicalSet.Nonempty
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
ENNReal
ENNReal.instPartialOrder
spectralRadius
ENNReal.ofNNReal
β€”Eq.trans_lt
sSup_image
IsCompact.sSup_lt_iff_of_continuous
instClosedIciTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
isCompact
Continuous.continuousOn
continuous_enorm
spectralRadius_one πŸ“–mathematicalβ€”spectralRadius
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
ENNReal
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”iSup_congr_Prop
one_eq
iSup_iSup_eq_left
nnnorm_one
NormedDivisionRing.to_normOneClass
spectralRadius_pow_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
spectralRadius
Ring.toSemiring
β€”ENNReal.iSupβ‚‚_pow_of_ne_zero
iSupβ‚‚_le
le_iSupβ‚‚_of_le
pow_mem_pow
nnnorm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
spectralRadius_pow_le' πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
spectralRadius
Ring.toSemiring
β€”pow_zero
spectralRadius_one
spectralRadius_pow_le
spectralRadius_zero πŸ“–mathematicalβ€”spectralRadius
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
ENNReal
instZeroENNReal
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
SpectralRadius.of_subsingleton
iSup_congr_Prop
zero_eq
iSup_iSup_eq_left
nnnorm_zero
subset_closedBall_norm πŸ“–mathematicalβ€”Set
Set.instHasSubset
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Norm.norm
NormedRing.toNorm
β€”dist_zero_right
norm_le_norm_of_mem
subset_closedBall_norm_mul πŸ“–mathematicalβ€”Set
Set.instHasSubset
spectrum
Semifield.toCommSemiring
Field.toSemifield
NormedField.toField
NormedRing.toRing
NormedAlgebra.toAlgebra
NormedRing.toSeminormedRing
Metric.closedBall
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real
Real.instMul
Norm.norm
NormedRing.toNorm
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”dist_zero_right
norm_le_norm_mul_of_mem

spectrum.SpectralRadius

Theorems

NameKindAssumesProvesValidatesDepends On
of_subsingleton πŸ“–mathematicalβ€”spectralRadius
ENNReal
instZeroENNReal
β€”iSup_congr_Prop
spectrum.of_subsingleton
iSup_neg
bot_eq_zero'
ENNReal.instCanonicallyOrderedAdd
ciSup_const
Nontrivial.to_nonempty
IsLocalRing.toNontrivial
Field.instIsLocalRing

---

← Back to Index