Documentation Verification Report

Instances

📁 Source: Mathlib/Analysis/Normed/Field/Instances.lean

Statistics

MetricCount
Definitions0
TheoremsinstCompletableTopField
1
Total1

NormedField

Theorems

NameKindAssumesProvesValidatesDepends On
instCompletableTopField 📖mathematical—CompletableTopField
toField
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
toNormedCommRing
—T3Space.toT0Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
EMetric.instIsCountablyGeneratedUniformity
SeminormedAddGroup.disjoint_nhds_zero
disjoint_iff
Filter.Eventually.mono
le_inv_of_le_inv₀
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
norm_inv
inv_inv
LT.lt.trans_le
mul_sub
inv_mul_cancel₀
sub_mul
mul_inv_cancel_right₀
one_mul
IsUniformAddGroup.cauchy_map_iff_tendsto
SeminormedAddCommGroup.to_isUniformAddGroup
Filter.tendsto_congr'
IsUniformAddGroup.cauchy_iff_tendsto_swapped
Filter.Tendsto.zero_mul_isBoundedUnder_le
Filter.isBoundedUnder_le_mul_tendsto_zero
Filter.Tendsto.isBoundedUnder_comp
Filter.tendsto_fst
Filter.tendsto_snd

---

← Back to Index