Documentation Verification Report

ControlledClosure

๐Ÿ“ Source: Mathlib/Analysis/Normed/Group/ControlledClosure.lean

Statistics

MetricCount
Definitions0
Theoremscontrolled_closure_of_complete, controlled_closure_range_of_complete
2
Total2

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
controlled_closure_of_complete ๐Ÿ“–mathematicalReal
Real.instLT
Real.instZero
NormedAddGroupHom.SurjectiveOnWith
NormedAddCommGroup.toSeminormedAddCommGroup
AddSubgroup.topologicalClosure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
Real.instAdd
โ€”SeminormedAddCommGroup.toIsTopologicalAddGroup
map_zero
AddMonoidHomClass.toZeroHomClass
NormedAddGroupHom.toAddMonoidHomClass
norm_zero
MulZeroClass.mul_zero
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
mul_pos
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
norm_pos_iff
controlled_sum_of_mem_closure
NormedAddCommGroup.cauchy_series_of_le_geometric''
one_div
one_half_lt_one
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
LT.lt.le
le_of_lt
inv_pow
mul_div_cancelโ‚€
LT.lt.ne
mul_comm
cauchySeq_tendsto_of_complete
map_sum
Finset.sum_congr
tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.comp
Continuous.tendsto
NormedAddGroupHom.continuous
norm_le_insert'
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_comm
mul_add
Distrib.leftDistribClass
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
sum_geometric_two_le
two_ne_zero
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
norm_sum_le
Finset.sum_range_succ'
add_le_add_left
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
add_le_add
add_assoc
add_mul
Distrib.rightDistribClass
le_of_tendsto'
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
ContinuousAt.tendsto
Continuous.continuousAt
continuous_norm
controlled_closure_range_of_complete ๐Ÿ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
DFunLike.coe
NormedAddGroupHom
NormedAddCommGroup.toSeminormedAddCommGroup
NormedAddGroupHom.funLike
SeminormedAddCommGroup.toNorm
Real
Real.instLT
Real.instZero
Real.instLE
Real.instMul
NormedAddGroupHom.SurjectiveOnWith
AddSubgroup.topologicalClosure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
NormedAddGroupHom.range
Real.instAdd
โ€”NormedAddGroupHom.mem_range
controlled_closure_of_complete

---

โ† Back to Index