Documentation Verification Report

SemiNormedGrp

📁 Source: Mathlib/Analysis/Normed/Group/SemiNormedGrp.lean

Statistics

MetricCount
DefinitionsSemiNormedGrp, hom, add, addCommGroup, hom, hom', neg, nsmul, sub, zsmul, carrier, instCoeSortType, instConcreteCategoryNormedAddGroupHomCarrier, instHasZeroMorphisms, instInhabited, instLargeCategory, instZeroHom, ofHom, str, SemiNormedGrp₁, hom, hom, hom', carrier, instCoeFunHomForallCarrier, instCoeSortType, instConcreteCategorySubtypeNormedAddGroupHomCarrierNormNoninc, instFunLike, instHasForget₂SubtypeNormedAddGroupHomCarrierNormNonincSemiNormedGrpCarrier, instHasZeroMorphisms, instInhabited, instLargeCategory, instSeminormedAddCommGroupCarrier, instZeroHom, mkHom, mkIso, str
37
Theoremsext, ext_iff, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, hasZeroObject, hom_add, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_neg, hom_nsum, hom_ofHom, hom_sub, hom_zero, hom_zsum, id_apply, inv_hom_apply, isZero_of_subsingleton, iso_isometry_of_normNoninc, ofHom_apply, ofHom_comp, ofHom_hom, ofHom_id, zero_apply, ext, ext_iff, normNoninc, coe_comp, coe_id, coe_of, comp_apply, ext, ext_iff, hasZeroObject, hom_comp, hom_ext, hom_ext_iff, hom_id, hom_inv_apply, hom_mkHom, id_apply, instAddMonoidHomClassSubtypeNormedAddGroupHomCarrierNormNoninc, inv_hom_apply, isZero_of_subsingleton, iso_isometry, mkHom_apply, mkHom_comp, mkHom_hom, mkHom_id, mkIso_hom, mkIso_inv, zero_apply
58
Total95

SemiNormedGrp

Definitions

NameCategoryTheorems
carrier 📖CompOp
29 mathmath: explicitCokernelπ_desc_apply, hom_sub, hom_id, coe_comp, ext_iff, isQuotient_explicitCokernelπ, zero_apply, id_apply, completion.norm_incl_eq, hom_add, hom_neg, inv_hom_apply, explicitCokernelπ_apply_dom_eq_zero, explicitCokernelπ_surjective, hom_comp, completion_obj_str, ofHom_apply, normNoninc_explicitCokernelπ, coe_id, hom_zero, comp_apply, ofHom_hom, completion_map, hom_inv_apply, hom_zsum, completion_obj_carrier, coe_of, hom_nsum, completion_completeSpace
instCoeSortType 📖CompOp—
instConcreteCategoryNormedAddGroupHomCarrier 📖CompOp
14 mathmath: explicitCokernelπ_desc_apply, coe_comp, ext_iff, zero_apply, id_apply, completion.norm_incl_eq, inv_hom_apply, explicitCokernelπ_apply_dom_eq_zero, explicitCokernelπ_surjective, ofHom_apply, coe_id, comp_apply, iso_isometry_of_normNoninc, hom_inv_apply
instHasZeroMorphisms 📖CompOp
4 mathmath: explicitCokernelIso_hom_π, explicitCokernelIso_hom_desc, explicitCokernelIso_inv_π, instHasCokernels
instInhabited 📖CompOp—
instLargeCategory 📖CompOp
42 mathmath: hom_sub, hom_id, coe_comp, ext_iff, explicitCokernelπ.epi, zero_apply, isZero_of_subsingleton, id_apply, completion.norm_incl_eq, hom_add, instHasEqualizers, instAdditiveCompletion, hom_neg, explicitCokernel_hom_ext_iff, inv_hom_apply, completion.map_normNoninc, explicitCokernelπ_apply_dom_eq_zero, explicitCokernelπ_surjective, hom_comp, hasLimit_parallelPair, explicitCokernelIso_hom_π, completion_obj_str, completion.lift_comp_incl, completion.map_zero, ofHom_apply, hasZeroObject, explicitCokernelDesc_zero, comp_explicitCokernelπ, coe_id, hom_zero, ofHom_id, comp_apply, comp_explicitCokernelπ_assoc, explicitCokernelIso_inv_π, ofHom_comp, instHasCokernels, completion_map, hom_inv_apply, hom_zsum, completion_obj_carrier, hom_nsum, completion_completeSpace
instZeroHom 📖CompOp
6 mathmath: zero_apply, completion.map_zero, explicitCokernelDesc_zero, comp_explicitCokernelπ, hom_zero, comp_explicitCokernelπ_assoc
ofHom 📖CompOp
6 mathmath: hom_ofHom, ofHom_apply, ofHom_id, ofHom_hom, ofHom_comp, completion_map
str 📖CompOp
28 mathmath: explicitCokernelπ_desc_apply, hom_sub, hom_id, coe_comp, ext_iff, isQuotient_explicitCokernelπ, zero_apply, id_apply, completion.norm_incl_eq, hom_add, hom_neg, inv_hom_apply, explicitCokernelπ_apply_dom_eq_zero, explicitCokernelπ_surjective, hom_comp, completion_obj_str, ofHom_apply, normNoninc_explicitCokernelπ, coe_id, hom_zero, comp_apply, ofHom_hom, completion_map, hom_inv_apply, hom_zsum, completion_obj_carrier, hom_nsum, completion_completeSpace

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
coe_id 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
coe_of 📖mathematical—carrier
of
——
comp_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
——
ext 📖—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
——CategoryTheory.ConcreteCategory.ext_apply
ext_iff 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
—ext
hasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
SemiNormedGrp
instLargeCategory
—isZero_of_subsingleton
hom_add 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
Hom.add
NormedAddGroupHom
carrier
str
NormedAddGroupHom.add
——
hom_comp 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.comp
SemiNormedGrp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
NormedAddGroupHom.comp
carrier
str
——
hom_ext 📖—Hom.hom——Hom.ext
hom_ext_iff 📖mathematical—Hom.hom—hom_ext
hom_id 📖mathematical—Hom.hom
CategoryTheory.CategoryStruct.id
SemiNormedGrp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
NormedAddGroupHom.id
carrier
str
——
hom_inv_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.Iso.hom
CategoryTheory.Iso.inv
—CategoryTheory.Iso.inv_hom_id_apply
hom_neg 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
Hom.neg
NormedAddGroupHom
carrier
str
NormedAddGroupHom.neg
——
hom_nsum 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
Hom.nsmul
NormedAddGroupHom
carrier
str
NormedAddGroupHom.nsmul
——
hom_ofHom 📖mathematical—Hom.hom
of
ofHom
——
hom_sub 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
Hom.sub
NormedAddGroupHom
carrier
str
NormedAddGroupHom.sub
——
hom_zero 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
instZeroHom
NormedAddGroupHom
carrier
str
NormedAddGroupHom.zero
——
hom_zsum 📖mathematical—Hom.hom
Quiver.Hom
SemiNormedGrp
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
Hom.zsmul
NormedAddGroupHom
carrier
str
NormedAddGroupHom.zsmul
——
id_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
inv_hom_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
CategoryTheory.Iso.inv
CategoryTheory.Iso.hom
—CategoryTheory.Iso.hom_inv_id_apply
isZero_of_subsingleton 📖mathematical—CategoryTheory.Limits.IsZero
SemiNormedGrp
instLargeCategory
—hom_ext
NormedAddGroupHom.ext
map_zero
AddMonoidHomClass.toZeroHomClass
NormedAddGroupHom.toAddMonoidHomClass
iso_isometry_of_normNoninc 📖mathematicalNormedAddGroupHom.NormNoninc
carrier
str
Hom.hom
CategoryTheory.Iso.hom
SemiNormedGrp
instLargeCategory
CategoryTheory.Iso.inv
Isometry
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
NormedAddGroupHom
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
—AddMonoidHomClass.isometry_of_norm
NormedAddGroupHom.toAddMonoidHomClass
le_antisymm
comp_apply
CategoryTheory.Iso.hom_inv_id
id_apply
ofHom_apply 📖mathematical—DFunLike.coe
of
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
ofHom
——
ofHom_comp 📖mathematical—ofHom
NormedAddGroupHom.comp
CategoryTheory.CategoryStruct.comp
SemiNormedGrp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
of
——
ofHom_hom 📖mathematical—ofHom
carrier
str
Hom.hom
——
ofHom_id 📖mathematical—ofHom
NormedAddGroupHom.id
CategoryTheory.CategoryStruct.id
SemiNormedGrp
CategoryTheory.Category.toCategoryStruct
instLargeCategory
of
——
zero_apply 📖mathematical—DFunLike.coe
carrier
CategoryTheory.ConcreteCategory.hom
SemiNormedGrp
instLargeCategory
NormedAddGroupHom
str
NormedAddGroupHom.funLike
instConcreteCategoryNormedAddGroupHomCarrier
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instZeroHom
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
——

SemiNormedGrp.Hom

Definitions

NameCategoryTheorems
add 📖CompOp
1 mathmath: SemiNormedGrp.hom_add
addCommGroup 📖CompOp—
hom 📖CompOp
14 mathmath: SemiNormedGrp.hom_sub, SemiNormedGrp.hom_id, SemiNormedGrp.hom_ext_iff, SemiNormedGrp.isQuotient_explicitCokernelπ, SemiNormedGrp.hom_add, SemiNormedGrp.hom_ofHom, SemiNormedGrp.hom_neg, SemiNormedGrp.hom_comp, SemiNormedGrp.normNoninc_explicitCokernelπ, SemiNormedGrp.hom_zero, SemiNormedGrp.ofHom_hom, SemiNormedGrp.completion_map, SemiNormedGrp.hom_zsum, SemiNormedGrp.hom_nsum
hom' 📖CompOp
1 mathmath: ext_iff
neg 📖CompOp
1 mathmath: SemiNormedGrp.hom_neg
nsmul 📖CompOp
1 mathmath: SemiNormedGrp.hom_nsum
sub 📖CompOp
1 mathmath: SemiNormedGrp.hom_sub
zsmul 📖CompOp
1 mathmath: SemiNormedGrp.hom_zsum

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖—hom'———
ext_iff 📖mathematical—hom'—ext

SemiNormedGrp.Hom.Simps

Definitions

NameCategoryTheorems
hom 📖CompOp—

SemiNormedGrp₁

Definitions

NameCategoryTheorems
carrier 📖CompOp
17 mathmath: hom_mkHom, comp_apply, coe_id, mkHom_hom, hom_comp, hom_id, Hom.normNoninc, iso_isometry, mkHom_apply, coe_of, coe_comp, ext_iff, instAddMonoidHomClassSubtypeNormedAddGroupHomCarrierNormNoninc, zero_apply, id_apply, hom_inv_apply, inv_hom_apply
instCoeFunHomForallCarrier 📖CompOp—
instCoeSortType 📖CompOp—
instConcreteCategorySubtypeNormedAddGroupHomCarrierNormNoninc 📖CompOp—
instFunLike 📖CompOp
1 mathmath: instAddMonoidHomClassSubtypeNormedAddGroupHomCarrierNormNoninc
instHasForget₂SubtypeNormedAddGroupHomCarrierNormNonincSemiNormedGrpCarrier 📖CompOp—
instHasZeroMorphisms 📖CompOp
1 mathmath: instHasCokernels
instInhabited 📖CompOp—
instLargeCategory 📖CompOp
17 mathmath: comp_apply, coe_id, hom_comp, hom_id, iso_isometry, coe_comp, mkHom_comp, zero_apply, id_apply, mkHom_id, mkIso_inv, hom_inv_apply, hasZeroObject, isZero_of_subsingleton, inv_hom_apply, mkIso_hom, instHasCokernels
instSeminormedAddCommGroupCarrier 📖CompOp
2 mathmath: iso_isometry, zero_apply
instZeroHom 📖CompOp
1 mathmath: zero_apply
mkHom 📖CompOp
7 mathmath: hom_mkHom, mkHom_hom, mkHom_apply, mkHom_comp, mkHom_id, mkIso_inv, mkIso_hom
mkIso 📖CompOp
2 mathmath: mkIso_inv, mkIso_hom
str 📖CompOp
16 mathmath: hom_mkHom, comp_apply, coe_id, mkHom_hom, hom_comp, hom_id, Hom.normNoninc, iso_isometry, mkHom_apply, coe_comp, ext_iff, instAddMonoidHomClassSubtypeNormedAddGroupHomCarrierNormNoninc, zero_apply, id_apply, hom_inv_apply, inv_hom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.comp
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
——
coe_id 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.id
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
——
coe_of 📖mathematical—carrier
of
——
comp_apply 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.comp
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
——
ext 📖—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
——CategoryTheory.ConcreteCategory.ext_apply
ext_iff 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
—ext
hasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
SemiNormedGrp₁
instLargeCategory
—isZero_of_subsingleton
hom_comp 📖mathematical—NormedAddGroupHom
carrier
str
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.comp
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
NormedAddGroupHom.comp
——
hom_ext 📖—Hom.hom——Hom.ext
hom_ext_iff 📖mathematical—Hom.hom—hom_ext
hom_id 📖mathematical—NormedAddGroupHom
carrier
str
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.id
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
NormedAddGroupHom.id
——
hom_inv_apply 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.Iso.hom
SemiNormedGrp₁
instLargeCategory
CategoryTheory.Iso.inv
—comp_apply
CategoryTheory.Iso.inv_hom_id
hom_mkHom 📖mathematicalNormedAddGroupHom.NormNonincNormedAddGroupHom
carrier
of
str
Hom.hom
mkHom
——
id_apply 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.CategoryStruct.id
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
——
instAddMonoidHomClassSubtypeNormedAddGroupHomCarrierNormNoninc 📖mathematical—AddMonoidHomClass
NormedAddGroupHom
carrier
str
NormedAddGroupHom.NormNoninc
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
instFunLike
—map_add
AddMonoidHomClass.toAddHomClass
NormedAddGroupHom.toAddMonoidHomClass
map_zero
AddMonoidHomClass.toZeroHomClass
inv_hom_apply 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.Iso.inv
SemiNormedGrp₁
instLargeCategory
CategoryTheory.Iso.hom
—comp_apply
CategoryTheory.Iso.hom_inv_id
isZero_of_subsingleton 📖mathematical—CategoryTheory.Limits.IsZero
SemiNormedGrp₁
instLargeCategory
—hom_ext
NormedAddGroupHom.ext
map_zero
AddMonoidHomClass.toZeroHomClass
NormedAddGroupHom.toAddMonoidHomClass
iso_isometry 📖mathematical—Isometry
carrier
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
instSeminormedAddCommGroupCarrier
DFunLike.coe
NormedAddGroupHom
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
CategoryTheory.Iso.hom
SemiNormedGrp₁
instLargeCategory
—AddMonoidHomClass.isometry_of_norm
AddMonoidHom.instAddMonoidHomClass
map_zero
AddMonoidHomClass.toZeroHomClass
NormedAddGroupHom.toAddMonoidHomClass
map_add
AddMonoidHomClass.toAddHomClass
le_antisymm
Hom.normNoninc
comp_apply
CategoryTheory.Iso.hom_inv_id
id_apply
mkHom_apply 📖mathematicalNormedAddGroupHom.NormNonincDFunLike.coe
NormedAddGroupHom
carrier
of
str
NormedAddGroupHom.funLike
Hom.hom
mkHom
——
mkHom_comp 📖mathematicalNormedAddGroupHom.NormNoninc
NormedAddGroupHom.comp
mkHom
CategoryTheory.CategoryStruct.comp
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
of
——
mkHom_hom 📖mathematical—mkHom
carrier
str
NormedAddGroupHom
NormedAddGroupHom.NormNoninc
Hom.hom
Hom.normNoninc
—Hom.normNoninc
mkHom_id 📖mathematical—mkHom
NormedAddGroupHom.id
NormedAddGroupHom.NormNoninc.id
CategoryTheory.CategoryStruct.id
SemiNormedGrp₁
CategoryTheory.Category.toCategoryStruct
instLargeCategory
of
—NormedAddGroupHom.NormNoninc.id
mkIso_hom 📖mathematicalNormedAddGroupHom.NormNoninc
SemiNormedGrp.carrier
SemiNormedGrp.str
SemiNormedGrp.Hom.hom
CategoryTheory.Iso.hom
SemiNormedGrp
SemiNormedGrp.instLargeCategory
CategoryTheory.Iso.inv
SemiNormedGrp₁
instLargeCategory
of
mkIso
mkHom
——
mkIso_inv 📖mathematicalNormedAddGroupHom.NormNoninc
SemiNormedGrp.carrier
SemiNormedGrp.str
SemiNormedGrp.Hom.hom
CategoryTheory.Iso.hom
SemiNormedGrp
SemiNormedGrp.instLargeCategory
CategoryTheory.Iso.inv
SemiNormedGrp₁
instLargeCategory
of
mkIso
mkHom
——
zero_apply 📖mathematical—DFunLike.coe
NormedAddGroupHom
carrier
str
NormedAddGroupHom.funLike
NormedAddGroupHom.NormNoninc
Hom.hom
Quiver.Hom
SemiNormedGrp₁
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instLargeCategory
instZeroHom
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
instSeminormedAddCommGroupCarrier
——

SemiNormedGrp₁.Hom

Definitions

NameCategoryTheorems
hom 📖CompOp
15 mathmath: SemiNormedGrp₁.hom_mkHom, SemiNormedGrp₁.comp_apply, SemiNormedGrp₁.coe_id, SemiNormedGrp₁.mkHom_hom, SemiNormedGrp₁.hom_comp, SemiNormedGrp₁.hom_id, SemiNormedGrp₁.hom_ext_iff, SemiNormedGrp₁.iso_isometry, SemiNormedGrp₁.mkHom_apply, SemiNormedGrp₁.coe_comp, SemiNormedGrp₁.ext_iff, SemiNormedGrp₁.zero_apply, SemiNormedGrp₁.id_apply, SemiNormedGrp₁.hom_inv_apply, SemiNormedGrp₁.inv_hom_apply
hom' 📖CompOp
2 mathmath: normNoninc, ext_iff

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖—hom'———
ext_iff 📖mathematical—hom'—ext
normNoninc 📖mathematical—NormedAddGroupHom.NormNoninc
SemiNormedGrp₁.carrier
SemiNormedGrp₁.str
hom'
——

SemiNormedGrp₁.Hom.Simps

Definitions

NameCategoryTheorems
hom 📖CompOp—

(root)

Definitions

NameCategoryTheorems
SemiNormedGrp 📖CompData
42 mathmath: SemiNormedGrp.hom_sub, SemiNormedGrp.hom_id, SemiNormedGrp.coe_comp, SemiNormedGrp.ext_iff, SemiNormedGrp.explicitCokernelπ.epi, SemiNormedGrp.zero_apply, SemiNormedGrp.isZero_of_subsingleton, SemiNormedGrp.id_apply, SemiNormedGrp.completion.norm_incl_eq, SemiNormedGrp.hom_add, SemiNormedGrp.instHasEqualizers, SemiNormedGrp.instAdditiveCompletion, SemiNormedGrp.hom_neg, SemiNormedGrp.explicitCokernel_hom_ext_iff, SemiNormedGrp.inv_hom_apply, SemiNormedGrp.completion.map_normNoninc, SemiNormedGrp.explicitCokernelπ_apply_dom_eq_zero, SemiNormedGrp.explicitCokernelπ_surjective, SemiNormedGrp.hom_comp, SemiNormedGrp.hasLimit_parallelPair, SemiNormedGrp.explicitCokernelIso_hom_π, SemiNormedGrp.completion_obj_str, SemiNormedGrp.completion.lift_comp_incl, SemiNormedGrp.completion.map_zero, SemiNormedGrp.ofHom_apply, SemiNormedGrp.hasZeroObject, SemiNormedGrp.explicitCokernelDesc_zero, SemiNormedGrp.comp_explicitCokernelπ, SemiNormedGrp.coe_id, SemiNormedGrp.hom_zero, SemiNormedGrp.ofHom_id, SemiNormedGrp.comp_apply, SemiNormedGrp.comp_explicitCokernelπ_assoc, SemiNormedGrp.explicitCokernelIso_inv_π, SemiNormedGrp.ofHom_comp, SemiNormedGrp.instHasCokernels, SemiNormedGrp.completion_map, SemiNormedGrp.hom_inv_apply, SemiNormedGrp.hom_zsum, SemiNormedGrp.completion_obj_carrier, SemiNormedGrp.hom_nsum, SemiNormedGrp.completion_completeSpace
SemiNormedGrp₁ 📖CompData
17 mathmath: SemiNormedGrp₁.comp_apply, SemiNormedGrp₁.coe_id, SemiNormedGrp₁.hom_comp, SemiNormedGrp₁.hom_id, SemiNormedGrp₁.iso_isometry, SemiNormedGrp₁.coe_comp, SemiNormedGrp₁.mkHom_comp, SemiNormedGrp₁.zero_apply, SemiNormedGrp₁.id_apply, SemiNormedGrp₁.mkHom_id, SemiNormedGrp₁.mkIso_inv, SemiNormedGrp₁.hom_inv_apply, SemiNormedGrp₁.hasZeroObject, SemiNormedGrp₁.isZero_of_subsingleton, SemiNormedGrp₁.inv_hom_apply, SemiNormedGrp₁.mkIso_hom, SemiNormedGrp₁.instHasCokernels

---

← Back to Index