Documentation Verification Report

Submodule

šŸ“ Source: Mathlib/Analysis/Normed/Group/Submodule.lean

Statistics

MetricCount
DefinitionsnormedAddCommGroup, seminormedAddCommGroup
2
Theoremscoe_norm, norm_coe
2
Total4

Submodule

Definitions

NameCategoryTheorems
normedAddCommGroup šŸ“–CompOp
62 mathmath: TensorProduct.mapInclIsometry_apply, ZLattice.summable_norm_zpow, Affine.Simplex.altitudeFoot_restrict, OrthonormalBasis.orthogonalProjection_eq_sum, IsHilbertSum.mkInternal, MeasureTheory.norm_condExpL2_le, instStrictConvexSpace, re_inner_starProjection_eq_normSq, OrthonormalBasis.orthogonalProjection_eq_sum_rankOne, Affine.Simplex.circumradius_restrict, ZLattice.tsum_norm_rpow_le, Affine.Simplex.ninePointCircle_restrict, OrthonormalBasis.orthogonalProjection_apply_eq_sum, EuclideanGeometry.Sphere.coe_secondInter, adjoint_subtypeL, ZLattice.tsumNormRPowBound_spec, contDiffOn_stereoToFun, HilbertBasis.hasSum_orthogonalProjection, stereoInvFun_apply, Affine.Simplex.altitude_restrict_eq_comap_subtype, norm_orthogonalProjection_apply_le, OrthonormalBasis.starProjection_eq_sum_rankOne, TensorProduct.inner_mapIncl_mapIncl, Affine.Simplex.ExcenterExists.touchpointWeights_restrict, EuclideanGeometry.orthogonalProjection_subtype, Affine.Simplex.ExcenterExists.excenter_restrict, norm_sq_eq_add_norm_sq_projection, ZLattice.summable_norm_rpow, Affine.Simplex.map_altitude_restrict, Affine.Simplex.exradius_restrict, Affine.Simplex.circumcenter_restrict, Affine.Simplex.height_restrict, ZLattice.summable_norm_pow_inv, Affine.Simplex.incenter_restrict, norm_orthogonalProjection_apply, Affine.Simplex.inradius_restrict, ZLattice.exists_forall_abs_repr_le_norm, DirectSum.IsInternal.subordinateOrthonormalBasis_def, Affine.Simplex.orthogonalProjectionSpan_restrict, Affine.Simplex.excenterWeights_restrict, Affine.Simplex.mongePoint_restrict, Affine.Simplex.eulerPoint_restrict, OrthonormalBasis.span_apply, Affine.Simplex.ExcenterExists.touchpoint_restrict, Affine.Simplex.excenterWeightsUnnorm_restrict, ContinuousLinearMap.IsPositive.orthogonalProjection_comp, adjoint_orthogonalProjection, ZLattice.le_norm_of_le_abs_repr, LinearIsometry.strictConvexSpace_range_iff, LinearIsometry.strictConvexSpace_range, angle_coe, ZLattice.normBound_spec, AffineSubspace.angle_coe, EuclideanGeometry.reflection_subtype, EuclideanGeometry.orthogonalProjection_apply, ZLattice.sum_piFinset_Icc_rpow_le, LinearMap.exists_map_addHaar_eq_smul_addHaar', TensorProduct.toLinearMap_mapInclIsometry, ZLattice.exists_finsetSum_norm_rpow_le_tsum, isHilbertSumOrthogonal, ZLattice.abs_repr_le, Affine.Simplex.excenterExists_restrict
seminormedAddCommGroup šŸ“–CompOp
69 mathmath: orthogonalDecomposition_symm_apply, toLinearEquiv_orthogonalDecomposition_symm, LinearMap.IsSymmetric.diagonalization_apply_self_apply, AffineIsometryEquiv.ofTop_apply, toLinearEquiv_orthogonalDecomposition, Orthonormal.codRestrict, OrthonormalBasis.orthogonalProjection_eq_sum_rankOne, OrthogonalFamily.of_pairwise, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces, subtypeā‚—įµ¢_toContinuousLinearMap, coe_orthogonalDecomposition_symm, AffineSubspace.coe_subtypeₐᵢ, subtypeā‚—įµ¢_toLinearMap, LinearEquiv.toSpanNonzeroSingleton_homothety, LinearIsometryEquiv.coe_ofEq_apply, LinearIsometry.equivRange_apply_coe, LinearIsometryEquiv.ofTop_toLinearEquiv, LinearIsometryEquiv.ofTop_symm_apply_coe, AffineIsometryEquiv.coe_ofEq_apply, AffineSubspace.isometryEquivMap.toAffineMap_eq, LinearMap.IsSymmetric.diagonalization_symm_apply, AffineIsometryEquiv.ofTop_symm_apply_coe, MeasureTheory.lpMeasToLpTrimLie_symm_indicator, LinearMap.IsSymmetric.restrict_invariant, AffineIsometryEquiv.ofEq_symm, LinearIsometry.extend_apply, coe_orthogonalDecomposition, norm_subtypeL, AffineSubspace.toContinuousAffineMap_subtypeₐᵢ, fst_orthogonalDecomposition_apply, orthogonalFamily_self, inner_orthogonalProjection_eq_of_mem_right, LinearMap.IsSymmetric.orthogonalFamily_eigenspaces', LinearIsometryEquiv.toSpanUnitSingleton_apply, LinearMap.IsSymmetric.orthogonalFamily_eigenspace_inf_eigenspace, LinearIsometryEquiv.ofTop_apply, coe_inner, AffineSubspace.isometryEquivMap.coe_apply, sndL_comp_coe_orthogonalDecomposition, coe_subtypeā‚—įµ¢, inner_orthogonalProjection_eq_of_mem_left, AffineSubspace.subtypeₐᵢ_linear, coord_norm', LinearIsometryEquiv.submoduleMap_symm_apply_coe, AffineSubspace.subtypeₐᵢ_linearIsometry, AffineIsometryEquiv.ofEq_rfl, norm_coe, orthogonalFamily_iff_pairwise, fstL_comp_coe_orthogonalDecomposition, exists_extension_norm_eq, ContinuousLinearEquiv.coord_norm', snd_orthogonalDecomposition_apply, AffineSubspace.isometryEquivMap.apply_symm_apply, coe_norm, orthogonalDecomposition_apply, LinearIsometryEquiv.ofEq_rfl, ContinuousLinearEquiv.coord_norm, norm_orthogonalProjection, AffineSubspace.subtypeₐᵢ_toAffineMap, Real.exists_extension_norm_eq, norm_subtypeL_le, MeasureTheory.lpMeasToLpTrimLie_symm_toLp, orthogonalProjection_norm_le, MeasureTheory.norm_condExpL2_le_one, LinearIsometry.submoduleMap_apply_coe, LinearMap.IsSymmetric.orthogonalFamily_iInf_eigenspaces, orthonormal_span, LinearIsometryEquiv.ofEq_symm, LinearIsometryEquiv.submoduleMap_apply_coe

Theorems

NameKindAssumesProvesValidatesDepends On
coe_norm šŸ“–mathematical—Norm.norm
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SetLike.instMembership
setLike
SeminormedAddCommGroup.toNorm
seminormedAddCommGroup
——
norm_coe šŸ“–mathematical—Norm.norm
SeminormedAddCommGroup.toNorm
Submodule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SetLike.instMembership
setLike
seminormedAddCommGroup
——

---

← Back to Index