Documentation Verification Report

MeasurableSpace

📁 Source: Mathlib/Analysis/Normed/Lp/MeasurableSpace.lean

Statistics

MetricCount
DefinitionstoLp, MeasurableSpace, measurableSpace
3
Theoremscoe_toLp, coe_toLp_symm, toLp_apply, toLp_symm_apply, borelSpace, borelSpace, measurable_ofLp, measurable_toLp
8
Total11

MeasurableEquiv

Definitions

NameCategoryTheorems
toLp 📖CompOp
5 mathmath: toLp_symm_apply, coe_toLp, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, toLp_apply, coe_toLp_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toLp 📖mathematicalDFunLike.coe
MeasurableEquiv
WithLp
WithLp.measurableSpace
EquivLike.toFunLike
instEquivLike
toLp
WithLp.toLp
coe_toLp_symm 📖mathematicalDFunLike.coe
MeasurableEquiv
WithLp
WithLp.measurableSpace
EquivLike.toFunLike
instEquivLike
symm
toLp
WithLp.ofLp
toLp_apply 📖mathematicalDFunLike.coe
MeasurableEquiv
WithLp
WithLp.measurableSpace
EquivLike.toFunLike
instEquivLike
toLp
WithLp.toLp
toLp_symm_apply 📖mathematicalDFunLike.coe
MeasurableEquiv
WithLp
WithLp.measurableSpace
EquivLike.toFunLike
instEquivLike
symm
toLp
WithLp.ofLp

PiLp

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
SecondCountableTopology
PiLp
topologicalSpace
WithLp.measurableSpace
MeasurableSpace.pi
topologicalSpace.eq_1
borel_comap
WithLp.measurableSpace.eq_1
BorelSpace.measurable_eq
Pi.borelSpace

WithLp

Definitions

NameCategoryTheorems
measurableSpace 📖CompOp
45 mathmath: measurable_ofLp, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, ProbabilityTheory.HasGaussianLaw.toLp_pi, OrthonormalBasis.measurePreserving_repr, MeasureTheory.charFunDual_pi', ProbabilityTheory.covarianceBilin_apply_basisFun_self, MeasurableEquiv.toLp_symm_apply, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, borelSpace, EuclideanSpace.volume_closedBall_fin_three, measurable_toLp, PiLp.volume_preserving_toLp, MeasureTheory.charFun_eq_prod_iff, EuclideanSpace.volume_closedBall_fin_two, MeasurableEquiv.coe_toLp, MeasureTheory.charFun_pi, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, PiLp.volume_preserving_ofLp, ProbabilityTheory.indepFun_iff_charFunDual_prod', PiLp.borelSpace, ProbabilityTheory.indepFun_iff_charFun_prod, ProbabilityTheory.covarianceBilin_apply_pi, EuclideanSpace.volume_ball_fin_three, ProbabilityTheory.covarianceBilin_apply_basisFun, OrthonormalBasis.measurePreserving_repr_symm, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, EuclideanSpace.volume_ball_fin_two, EuclideanSpace.volume_ball, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', MeasureTheory.charFunDual_prod', ProbabilityTheory.iIndepFun_iff_charFun_pi, MeasureTheory.charFunDual_eq_pi_iff', volume_euclideanSpace_eq_dirac, EuclideanSpace.coe_measurableEquiv, ProbabilityTheory.HasGaussianLaw.toLp_prodMk, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, EuclideanSpace.measurableEquiv_toEquiv, OrthonormalBasis.measurePreserving_measurableEquiv, MeasureTheory.charFun_eq_pi_iff, MeasurableEquiv.toLp_apply, MeasureTheory.charFun_prod, MeasureTheory.charFunDual_eq_prod_iff', EuclideanSpace.volume_closedBall, EuclideanSpace.coe_measurableEquiv_symm, MeasurableEquiv.coe_toLp_symm

Theorems

NameKindAssumesProvesValidatesDepends On
borelSpace 📖mathematicalBorelSpace
WithLp
instProdTopologicalSpace
measurableSpace
Prod.instMeasurableSpace
instProdTopologicalSpace.eq_1
borel_comap
measurableSpace.eq_1
BorelSpace.measurable_eq
Prod.borelSpace
measurable_ofLp 📖mathematicalMeasurable
WithLp
measurableSpace
ofLp
comap_measurable
measurable_toLp 📖mathematicalMeasurable
WithLp
measurableSpace
toLp
Set.preimage_preimage

(root)

Definitions

NameCategoryTheorems
MeasurableSpace 📖CompData
162 mathmath: MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory, measurable_from_top, MeasureTheory.OuterMeasure.IsMetric.le_caratheodory, MeasurableSpace.comap_const, MeasurableSpace.comap_bot, MeasurableSpace.generateFrom_empty, MeasureTheory.condLExp_bot', MeasureTheory.AddContent.measure_eq, Measurable.sup_of_right, MeasureTheory.VectorMeasure.trim_eq_self, MeasurableSpace.exists_countablyGenerated_le_of_countablySeparated, OpensMeasurableSpace.borel_le, MeasurableSpace.measurableSet_iInf, MeasurableSpace.measurableSet_sSup, MeasurableSpace.map_const, le_eventuallyMeasurableSpace, MeasureTheory.OuterMeasure.le_sum_caratheodory, MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable_range, MeasureTheory.IsStoppingTime.measurableSpace_le_of_le_const, MeasurableSpace.generateFrom_iUnion_measurableSet, generateFrom_Icc_mem_le_borel, PMF.toOuterMeasure_caratheodory, MeasurableSpace.invariants_le, MeasureTheory.condLExp_bot, MeasurableSpace.generateFrom_sup_generateFrom, Measurable.comap_le, ProbabilityTheory.iIndep_precomp_of_bijective, MeasurableSpace.generateFrom_memPartition_le, generateFrom_Ico_mem_le_borel, MeasurableSpace.map_inf, MeasurableSpace.comap_compl, ProbabilityTheory.condExpKernel_ae_eq_condExp', Measurable.le_map, borel_eq_top_of_discrete, MeasureTheory.IsStoppingTime.measurableSpace_mono, indepSets_comap_of_bcf, ProbabilityTheory.iIndep_comap_mem_iff, MeasureTheory.cylinderEvents_mono, StieltjesFunction.borel_le_measurable, MeasureTheory.OuterMeasure.le_add_caratheodory, MeasurableSpace.measurableSet_bot_iff, MeasureTheory.Filtration.rightCont_apply, MeasureTheory.OuterMeasure.zero_caratheodory, le_generateFrom_piiUnionInter, MeasurableSpace.comap_prodMk, MeasureTheory.OuterMeasure.top_caratheodory, MeasurableSpace.measurableSpace_iSup_eq, MeasureTheory.IsStoppingTime.measurableSpace_le, MeasureTheory.Measure.pi_caratheodory, ProbabilityTheory.iIndepSet.iIndep_comap_mem, MeasureTheory.trim_eq_self, MeasureTheory.condExp_bot, ProbabilityTheory.condIndepFun_self_left, MeasurableSpace.generateFrom_singleton_univ, MeasureTheory.Filtration.rightCont_def, MeasureTheory.condExp_def, measurable_iff_comap_le, generateFrom_piiUnionInter_measurableSet, ProbabilityTheory.Kernel.iIndep_comap_mem_iff, MeasureTheory.StronglyMeasurable.integral_condExpKernel', MeasureTheory.Filtration.le', ProbabilityTheory.condExp_ae_eq_integral_condExpKernel', MeasurableSpace.CountablyGenerated.sup, MeasureTheory.IsStoppingTime.measurableSpace_min, MeasurableSpace.generateFrom_mono, MeasureTheory.Filtration.rightCont_eq_of_not_isMax, MeasureTheory.tendsto_ae_condExp, ProbabilityTheory.iSup_partitionFiltration_eq_generateFrom_range, ProbabilityTheory.condExpKernel_def, MeasureTheory.SimpleFunc.simpleFunc_bot', ProbabilityTheory.Kernel.iIndep_precomp_of_bijective, ProbabilityTheory.condIndepFun_self_right, MeasurableSpace.comap_iSup, MeasureTheory.IsStoppingTime.measurableSpace_min_const, MeasureTheory.OuterMeasure.le_smul_caratheodory, MeasureTheory.sigmaFinite_bot_iff, MeasurableSpace.generateFrom_memPartition_le_range, MeasurableSpace.inf_le_invariants_comp, Measurable.iSup', MeasureTheory.tendsto_eLpNorm_condExp, MeasurableSpace.gc_comap_map, MeasureTheory.condLExp_bot_ae_eq, ProbabilityTheory.iSup_countableFiltration, MeasurableSpace.generateFrom_countablePartition_le, pi_le_borel_pi, MeasureTheory.Filtration.rightCont_eq, MeasurableSpace.le_def, MeasureTheory.IsStoppingTime.measurableSpace_le_of_countable, MeasurableSpace.map_iInf, MeasureTheory.cylinderEvents_le_pi, MeasureTheory.Filtration.coeFn_sup, ProbabilityTheory.condVar_bot', MeasurableSpace.comap_sup, Measurable.sup_of_left, MeasurableSpace.measurableSet_sInf, MeasureTheory.Content.borel_le_caratheodory, MeasureTheory.measurableSpace_le_predictable_of_measurableSet, MeasurableSpace.generateFrom_singleton, ProbabilityTheory.indep_bot_right, ProbabilityTheory.condVar_bot_ae_eq, MeasureTheory.Filtration.mono, ProbabilityTheory.indep_bot_left, MeasureTheory.Filtration.sSup_def, MeasureTheory.Filtration.le, instDiscreteMeasurableSpace, MeasurableSpace.comap_le_iff_le_map, MeasureTheory.SimpleFunc.simpleFunc_bot, ProbabilityTheory.condVar_bot, MeasurableSpace.le_invariants_iterate, measurable_iff_le_map, MeasureTheory.comap_eval_le_generateFrom_squareCylinders_singleton, MeasurableSpace.measurableSet_injective, ProbabilityTheory.condExpKernel_eq, MeasurableSpace.comap_map_le, stronglyMeasurable_bot_iff, MeasurableSpace.map_top, MeasurableSpace.generateFrom_memPartition_le_succ, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkRight, MeasurableSpace.generateFrom_countablePartition_le_succ, MeasurableSpace.generateFrom_singleton_le, MeasurableSpace.iSup_generateFrom, MeasureTheory.condLExp_def, borel_eq_top_of_countable, ProbabilityTheory.iIndep.precomp, prod_le_borel_prod, ProbabilityTheory.iSup_partitionFiltration, MeasurableSpace.measurableSet_top, ProbabilityTheory.Kernel.indep_bot_left, MeasureTheory.sigmaFinite_trim_bot_iff, MeasureTheory.le_toOuterMeasure_caratheodory, ProbabilityTheory.condIndepFun_iff_condDistrib_prod_ae_eq_prodMkLeft, MeasurableSpace.generateFrom_iUnion_memPartition_le, ProbabilityTheory.Kernel.iIndep.precomp, borel_anti, MeasurableSpace.le_map_comap, MeasureTheory.condExp_bot', ProbabilityTheory.Kernel.indep_bot_right, MeasurableSpace.comap_le_comap_pi, MeasureTheory.OuterMeasure.dirac_caratheodory, MeasureTheory.Submartingale.exists_ae_trim_tendsto_of_bdd, MeasureTheory.Filtration.rightCont_eq_of_neBot_nhdsGT, MeasureTheory.Filtration.coeFn_inf, ProbabilityTheory.Kernel.id_prod_eq, MeasurableSpace.generateFrom_le_iff, MeasurableSpace.measurableSet_inf, MeasurableSpace.measurableSet_sup, MeasureTheory.Filtration.mono', MeasureTheory.IsStoppingTime.le_measurableSpace_of_const_le, MeasurableSpace.DynkinSystem.ofMeasurableSpace_le_ofMeasurableSpace_iff, MeasurableSpace.generateFrom_le, measurableSet_iSup_of_mem_piiUnionInter, MeasurableSpace.monotone_map, MeasurableSpace.generateFrom_singleton_empty, MeasureTheory.condExp_bot_ae_eq, MeasureTheory.Filtration.stronglyMeasurable_limitProcess, MeasureTheory.IsStoppingTime.measurableSpace_le_of_le, MeasurableSpace.comap_not, MeasurableSpace.monotone_comap, MeasurableSpace.measurableSet_iSup, MeasureTheory.Filtration.sInf_def, ProbabilityTheory.condExpKernel_apply_eq_condDistrib, ProbabilityTheory.condIndepFun_iff_map_prod_eq_prod_condDistrib_prod_condDistrib

---

← Back to Index