| Name | Category | Theorems |
basisFun π | CompOp | 9 mathmath: basisFun_equivFun, EuclideanSpace.basisFun_toBasis, basisFun_repr, basisFun_apply, Matrix.toEuclideanLin_eq_toLin, basisFun_eq_pi_basisFun, basis_toMatrix_basisFun_mul, basisFun_map, Matrix.toLpLin_eq_toLin
|
bornology π | CompOp | β |
continuousLinearEquiv π | CompOp | 11 mathmath: continuousLinearEquiv_symm_apply, coe_continuousLinearEquiv, MeasureTheory.charFunDual_pi', hasFDerivAt_toLp, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', hasFDerivAt_ofLp, MeasureTheory.charFunDual_eq_pi_iff', coe_symm_continuousLinearEquiv, hasStrictFDerivAt_ofLp, continuousLinearEquiv_apply, hasStrictFDerivAt_toLp
|
equivβα΅’ π | CompOp | β |
homeomorph π | CompOp | 2 mathmath: toEquiv_homeomorph, toHomeomorph_uniformEquiv
|
instDist π | CompOp | 12 mathmath: dist_eq_card, EuclideanSpace.dist_single_same, dist_eq_of_L1, dist_pseudoMetricSpaceToPi, dist_eq_iSup, dist_apply_le, dist_toLp_single_same, dist_sq_eq_of_L2, EuclideanSpace.dist_eq, dist_eq_of_L2, EuclideanSpace.dist_sq_eq, dist_eq_sum
|
instEDist π | CompOp | 11 mathmath: edist_self, edist_eq_sum, EuclideanSpace.edist_single_same, edist_eq_iSup, edist_apply_le, edist_eq_card, edist_toLp_single_same, EuclideanSpace.edist_eq, edist_eq_of_L1, edist_comm, edist_eq_of_L2
|
instEMetricSpace π | CompOp | 2 mathmath: Matrix.l2_opNNNorm_def, Matrix.l2_opNorm_def
|
instMetricSpace π | CompOp | β |
instNorm π | CompOp | 30 mathmath: Matrix.frobenius_norm_replicateCol, norm_toLp_const', Matrix.l2_opNorm_mulVec, norm_toLp_one, norm_ofLp, EuclideanSpace.norm_sq_eq, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, norm_toLp_single, EuclideanSpace.norm_single, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, InnerProductGeometry.norm_toLp_symm_crossProduct, instNormSMulClass, Behrend.norm_of_mem_sphere, norm_eq_sum, InnerProductGeometry.norm_ofLp_crossProduct, norm_sq_eq_of_L2, norm_eq_of_L1, norm_eq_ciSup, EuclideanSpace.norm_eq, norm_seminormedAddCommGroupToPi, norm_eq_of_nat, norm_toLp_const, norm_apply_le, Matrix.frobenius_norm_diagonal, equiv_lpPiLp_norm, norm_toLp, norm_eq_of_L2, Matrix.frobenius_norm_replicateRow, Quaternion.norm_toLp_equivTuple, norm_eq_card
|
instPseudoEMetricSpace π | CompOp | 5 mathmath: lipschitzWith_toLp, antilipschitzWith_toLp, lipschitzWith_ofLp, antilipschitzWith_ofLp, isometry_ofLp_infty
|
instPseudoMetricSpace π | CompOp | 31 mathmath: Matrix.l2_opNorm_toEuclideanCLM, nndist_eq_sum, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, EuclideanSpace.closedBall_zero_eq, Matrix.cstar_nnnorm_def, Behrend.sphere_subset_preimage_metric_sphere, EuclideanSpace.nndist_eq, Euclidean.closedBall_eq_image, EuclideanSpace.volume_closedBall_fin_three, nndist_toLp_single_same, nndist_apply_le, Matrix.toEuclideanCLM_toLp, EuclideanSpace.volume_closedBall_fin_two, EuclideanSpace.sphere_zero_eq, Matrix.ofLp_toEuclideanCLM, Matrix.l2_opNNNorm_def, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, EuclideanSpace.volume_ball_fin_three, Euclidean.closedBall_eq_preimage, EuclideanSpace.ball_zero_eq, EuclideanSpace.volume_ball_fin_two, Euclidean.ball_eq_preimage, EuclideanSpace.volume_ball, Matrix.cstar_norm_def, Matrix.l2_opNorm_def, EuclideanSpace.nndist_single_same, instIsBoundedSMul, EuclideanSpace.volume_closedBall, nndist_eq_of_L2, nndist_eq_iSup, nndist_eq_of_L1
|
normedAddCommGroup π | CompOp | 141 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Pi.comul_eq_adjoint, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, contDiff_toLp, contDiffOn_piLp', Matrix.spectrum_toEuclideanLin, Matrix.cstar_nnnorm_def, contDiff_piLp', EuclideanSpace.basisFun_toBasis, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, contMDiff_neg_sphere, SmoothBumpCovering.exists_immersion_euclidean, EuclideanSpace.basisFun_apply, ProbabilityTheory.HasGaussianLaw.toLp_pi, Matrix.IsHermitian.eigenvalues_eq, instIsManifoldRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc, Icc_isBoundaryPoint_bot, OrthonormalBasis.measurePreserving_repr, Matrix.IsHermitian.eigenvectorUnitary_col_eq, Matrix.toEuclideanLin_apply, mfderivWithin_projIcc_one, Euclidean.closedBall_eq_image, MeasureTheory.charFunDual_pi', Pi.counit_eq_adjoint, ProbabilityTheory.covarianceBilin_apply_basisFun_self, Icc_isInteriorPoint_interior, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, EuclideanSpace.instFactEqNatFinrankFin, mfderivWithin_comp_projIcc_one, contDiffWithinAt_euclidean, contDiffAt_piLp_apply, EuclideanSpace.volume_closedBall_fin_three, IccLeftChart_extend_interior_pos, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, Matrix.IsHermitian.eigenvectorUnitary_mulVec, contMDiff_coe_sphere, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, volume_preserving_toLp, InnerProductGeometry.norm_toLp_symm_crossProduct, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, Matrix.toEuclideanCLM_toLp, EuclideanSpace.volume_closedBall_fin_two, Pi.orthonormalBasis_apply, Matrix.piLp_ofLp_toEuclideanLin, frontier_range_modelWithCornersEuclideanHalfSpace, EuclideanSpace.instIsManifoldSphere, contMDiff_subtype_coe_Icc, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, EuclideanHalfSpace.convex, contDiffAt_piLp', contDiffAt_euclidean, finrank_euclideanSpace, mfderiv_coe_sphere_injective, contDiffOn_euclidean, volume_preserving_ofLp, InnerProductGeometry.norm_ofLp_crossProduct, Matrix.ofLp_toEuclideanCLM, Matrix.isPositive_toEuclideanLin_iff, EuclideanQuadrant.convex, contDiff_piLp, IccLeftChart_extend_bot, Matrix.l2_opNNNorm_def, EuclideanSpace.basisFun_repr, OrthonormalBasis.equiv_apply_euclideanSpace, Manifold.riemannianEDist_def, modelWithCornersEuclideanHalfSpace_zero, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, Matrix.IsHermitian.eigenvectorUnitary_apply, contDiffOn_piLp, ProbabilityTheory.covarianceBilin_apply_pi, Pi.orthonormalBasis.toBasis, contMDiffWithinAt_comp_projIcc_iff, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, EuclideanSpace.volume_ball_fin_three, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, ProbabilityTheory.covarianceBilin_apply_basisFun, Diffeology.isPlot_iff_contDiff, OrthonormalBasis.measurePreserving_repr_symm, analyticOn_ofLp, oneTangentSpaceIcc_def, IccRightChart_extend_top_mem_frontier, Matrix.IsHermitian.eigenvectorUnitary_coe, Matrix.toEuclideanLin_eq_toLin, analyticOn_toLp, Euclidean.closedBall_eq_preimage, Matrix.isHermitian_iff_isSymmetric, EuclideanSpace.basisFun_inner, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, mdifferentiableWithinAt_comp_projIcc_iff, Diffeology.IsContDiffCompatible.isPlot_iff, range_mfderiv_coe_sphere, contDiffOn_piLp_apply, Matrix.ofLp_toEuclideanLin_apply, EuclideanSpace.volume_ball_fin_two, EuclideanSpace.inner_basisFun_real, iccLeftChart_extend_zero, Euclidean.ball_eq_preimage, EuclideanSpace.volume_ball, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', Diffeology.IsPlot.contDiff, contDiff_ofLp, contDiff_piLp_apply, contDiffWithinAt_piLp, MeasureTheory.charFunDual_eq_pi_iff', Matrix.toEuclideanLin_apply_piLp_toLp, contMDiffOn_comp_projIcc_iff, volume_euclideanSpace_eq_dirac, exists_embedding_euclidean_of_compact, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, OrthonormalBasis.coe_equiv_euclideanSpace, Matrix.IsHermitian.eigenvectorUnitary_transpose_apply, range_modelWithCornersEuclideanHalfSpace, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, Matrix.toEuclideanLin_eq_toLin_orthonormal, contDiffAt_piLp, Matrix.cstar_norm_def, ContMDiff.codRestrict_sphere, mfderiv_subtype_coe_Icc_one, MeasureTheory.eval_integral_piLp, Matrix.IsHermitian.mulVec_eigenvectorBasis, Matrix.l2_opNorm_def, Matrix.toEuclideanLin_toLp, OrthonormalBasis.measurePreserving_measurableEquiv, Pi.orthonormalBasis_repr, contDiffWithinAt_piLp', IccRightChart_extend_top, boundary_Icc, contDiffWithinAt_piLp_apply, EuclideanSpace.volume_closedBall, finrank_euclideanSpace_fin, boundary_product, Matrix.IsHermitian.star_eigenvectorUnitary_mulVec, InnerProductSpace.symm_toEuclideanLin_rankOne, contDiff_euclidean, IccLeftChart_extend_bot_mem_frontier, Icc_isBoundaryPoint_top, instIsManifoldIcc, contMDiffOn_projIcc, contMDiff_circleExp
|
normedAddCommGroupToPi π | CompOp | β |
normedSpace π | CompOp | 74 mathmath: Matrix.l2_opNorm_toEuclideanCLM, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, contDiff_toLp, contDiffOn_piLp', Matrix.cstar_nnnorm_def, contDiff_piLp', contMDiff_neg_sphere, SmoothBumpCovering.exists_immersion_euclidean, instIsManifoldRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc, Icc_isBoundaryPoint_bot, mfderivWithin_projIcc_one, MeasureTheory.charFunDual_pi', Icc_isInteriorPoint_interior, mfderivWithin_comp_projIcc_one, contDiffWithinAt_euclidean, contDiffAt_piLp_apply, IccLeftChart_extend_interior_pos, contMDiff_coe_sphere, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, frontier_range_modelWithCornersEuclideanHalfSpace, EuclideanSpace.instIsManifoldSphere, contMDiff_subtype_coe_Icc, contDiffAt_piLp', contDiffAt_euclidean, mfderiv_coe_sphere_injective, contDiffOn_euclidean, contDiff_piLp, IccLeftChart_extend_bot, Matrix.l2_opNNNorm_def, Manifold.riemannianEDist_def, modelWithCornersEuclideanHalfSpace_zero, contDiffOn_piLp, contMDiffWithinAt_comp_projIcc_iff, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, Diffeology.isPlot_iff_contDiff, analyticOn_ofLp, oneTangentSpaceIcc_def, IccRightChart_extend_top_mem_frontier, analyticOn_toLp, mdifferentiableWithinAt_comp_projIcc_iff, Diffeology.IsContDiffCompatible.isPlot_iff, range_mfderiv_coe_sphere, contDiffOn_piLp_apply, iccLeftChart_extend_zero, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', Diffeology.IsPlot.contDiff, contDiff_ofLp, contDiff_piLp_apply, contDiffWithinAt_piLp, MeasureTheory.charFunDual_eq_pi_iff', contMDiffOn_comp_projIcc_iff, exists_embedding_euclidean_of_compact, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, range_modelWithCornersEuclideanHalfSpace, contDiffAt_piLp, Matrix.cstar_norm_def, ContMDiff.codRestrict_sphere, mfderiv_subtype_coe_Icc_one, MeasureTheory.eval_integral_piLp, Matrix.l2_opNorm_def, contDiffWithinAt_piLp', IccRightChart_extend_top, boundary_Icc, contDiffWithinAt_piLp_apply, boundary_product, InnerProductSpace.symm_toEuclideanLin_rankOne, contDiff_euclidean, IccLeftChart_extend_bot_mem_frontier, Icc_isBoundaryPoint_top, instIsManifoldIcc, contMDiffOn_projIcc, contMDiff_circleExp
|
normedSpaceSeminormedAddCommGroupToPi π | CompOp | β |
proj π | CompOp | 7 mathmath: hasStrictFDerivAt_piLp, hasFDerivWithinAt_piLp, hasFDerivWithinAt_euclidean, hasStrictFDerivAt_apply, hasFDerivAt_apply, proj_apply, hasStrictFDerivAt_euclidean
|
projβ π | CompOp | 1 mathmath: projβ_apply
|
pseudoEmetricAux π | CompOp | β |
pseudoMetricAux π | CompOp | β |
pseudoMetricSpaceToPi π | CompOp | 2 mathmath: isBoundedSMulSeminormedAddCommGroupToPi, dist_pseudoMetricSpaceToPi
|
seminormedAddCommGroup π | CompOp | 98 mathmath: Matrix.l2_opNorm_toEuclideanCLM, OrthonormalBasis.singleton_repr, DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply, LinearIsometryEquiv.piLpCongrRight_symm, EuclideanSpace.orthonormal_single, OrthonormalBasis.repr_injective, Matrix.cstar_nnnorm_def, LinearMap.IsSymmetric.diagonalization_apply_self_apply, EuclideanSpace.inner_single_left, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, OrthonormalBasis.repr_self, LinearIsometryEquiv.piLpCongrRight_apply, OrthonormalBasis.measurePreserving_repr, nnnorm_eq_of_L2, MeasureTheory.integrable_piLp_iff, Quaternion.linearIsometryEquivTuple_symm_apply, LDL.lowerInv_orthogonal, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, nnnorm_toLp_one, sumPiLpEquivProdLpPiLp_symm_apply_ofLp, Module.Basis.coe_toOrthonormalBasis_repr, LinearIsometryEquiv.piLpCongrLeft_apply, OrthonormalBasis.coe_ofRepr, EuclideanSpace.nnnorm_single, Complex.orthonormalBasisOneI_repr_apply, nnnorm_toLp_single, Matrix.toEuclideanCLM_toLp, nnnorm_toLp_const', LinearMap.IsSymmetric.diagonalization_symm_apply, OrthonormalBasis.tensorProduct_repr_tmul_apply', enorm_apply_le, Matrix.l2_opNNNorm_mulVec, nnnorm_apply_le, OrthonormalBasis.equiv_apply, Module.Basis.coe_toOrthonormalBasis_repr_symm, MeasureTheory.charFun_pi, OrthonormalBasis.repr_apply_apply, LinearIsometryEquiv.piLpCurry_apply, LinearMap.toMatrix_innerββ_apply, RCLike.wInner_one_eq_inner, LinearIsometryEquiv.piLpCongrRight_single, Matrix.ofLp_toEuclideanCLM, nnnorm_eq_ciSup, LinearMap.IsSymmetric.eigenvectorBasis_apply_self_apply, Matrix.l2_opNNNorm_def, EuclideanSpace.basisFun_repr, Complex.orthonormalBasisOneI_repr_symm_apply, LinearIsometryEquiv.piLpCongrRight_refl, coe_lpPiLpβα΅’, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, Matrix.frobenius_nnnorm_replicateRow, EuclideanSpace.inner_eq_star_dotProduct, OrthonormalBasis.sum_repr_symm, Matrix.frobenius_nnnorm_replicateCol, nnnorm_toLp, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, Matrix.frobenius_nnnorm_diagonal, MeasureTheory.memLp_piLp_iff, OrthonormalBasis.measurePreserving_repr_symm, EuclideanSpace.piLpCongrLeft_single, LinearIsometryEquiv.piLpCurry_symm_apply, Matrix.isHermitian_iff_isSymmetric, EuclideanSpace.basisFun_inner, InnerProductSpace.toMatrix_rankOne, coe_lpPiLpβα΅’_symm, EuclideanSpace.inner_basisFun_real, MeasureTheory.Integrable.of_eval_piLp, OrthonormalBasis.repr_symm_single, toMatrix_innerSL_apply, nnnorm_eq_of_L1, ProbabilityTheory.iIndepFun_iff_charFun_pi, InnerProductSpace.gramSchmidtOrthonormalBasis_inv_triangular', MeasureTheory.MemLp.of_eval_piLp, OrthonormalBasis.coe_toBasis_repr, OrthonormalBasis.sum_repr, LinearIsometryEquiv.piLpCongrLeft_single, OrthonormalBasis.coe_toBasis_repr_apply, EuclideanSpace.inner_toLp_toLp, nnnorm_eq_sum, EuclideanSpace.nnnorm_eq, inner_apply, EuclideanSpace.inner_single_right, Matrix.cstar_norm_def, inner_matrix_row_row, Quaternion.linearIsometryEquivTuple_apply, nnnorm_seminormedAddCommGroupToPi, nnnorm_toLp_const, Matrix.l2_opNorm_def, LinearIsometryEquiv.piLpCongrLeft_symm, Pi.orthonormalBasis_repr, MeasureTheory.charFun_eq_pi_iff, OrthonormalBasis.repr_reindex, InnerProductSpace.symm_toEuclideanLin_rankOne, OrthonormalBasis.tensorProduct_repr_tmul_apply, RCLike.inner_eq_wInner_one, nnnorm_ofLp, sumPiLpEquivProdLpPiLp_apply_ofLp, inner_matrix_col_col
|
seminormedAddCommGroupToPi π | CompOp | 3 mathmath: norm_seminormedAddCommGroupToPi, normSMulClassSeminormedAddCommGroupToPi, nnnorm_seminormedAddCommGroupToPi
|
sumPiLpEquivProdLpPiLp π | CompOp | 2 mathmath: sumPiLpEquivProdLpPiLp_symm_apply_ofLp, sumPiLpEquivProdLpPiLp_apply_ofLp
|
topologicalSpace π | CompOp | 94 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Pi.comul_eq_adjoint, continuousLinearEquiv_symm_apply, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, Matrix.spectrum_toEuclideanLin, Matrix.cstar_nnnorm_def, Matrix.l2_opNorm_mulVec, frontier_halfSpace, DiffeologicalSpace.CorePlotsOn.isOpen_iff_preimages_plots, SmoothBumpCovering.exists_immersion_euclidean, ProbabilityTheory.HasGaussianLaw.toLp_pi, stereographic'_source, MeasureTheory.integrable_piLp_iff, instProdT0Space, coe_continuousLinearEquiv, Matrix.toEuclideanLin_apply, Euclidean.closedBall_eq_image, MeasureTheory.charFunDual_pi', Pi.counit_eq_adjoint, EuclideanSpace.instFactEqNatFinrankFin, differentiable_euclidean, continuous_toLp, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, Matrix.toEuclideanCLM_toLp, hasFDerivAt_toLp, Matrix.piLp_ofLp_toEuclideanLin, stereographic'_target, Matrix.l2_opNNNorm_mulVec, frontier_range_modelWithCornersEuclideanHalfSpace, interior_halfSpace, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, EuclideanHalfSpace.convex, hasStrictFDerivAt_piLp, finrank_euclideanSpace, hasFDerivWithinAt_piLp, differentiableOn_piLp, closure_open_halfSpace, Matrix.ofLp_toEuclideanCLM, differentiableWithinAt_euclidean, Matrix.isPositive_toEuclideanLin_iff, isOpenMap_apply, EuclideanQuadrant.convex, differentiableAt_piLp, Matrix.l2_opNNNorm_def, borelSpace, continuous_apply, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, MeasureTheory.memLp_piLp_iff, toEquiv_homeomorph, IccRightChart_extend_top_mem_frontier, hasFDerivWithinAt_euclidean, secondCountableTopology, hasStrictFDerivAt_apply, Matrix.toEuclideanLin_eq_toLin, Euclidean.closedBall_eq_preimage, Matrix.isHermitian_iff_isSymmetric, differentiableAt_euclidean, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, continuous_ofLp, Diffeology.isOpen_iff_preimages_plots, differentiableOn_euclidean, Diffeology.IsPlot.continuous, differentiable_piLp, Matrix.ofLp_toEuclideanLin_apply, MeasureTheory.Integrable.of_eval_piLp, Euclidean.ball_eq_preimage, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', hasFDerivAt_ofLp, MeasureTheory.charFunDual_eq_pi_iff', MeasureTheory.MemLp.of_eval_piLp, Matrix.toEuclideanLin_apply_piLp_toLp, hasFDerivAt_apply, proj_apply, exists_embedding_euclidean_of_compact, coe_symm_continuousLinearEquiv, stereographic'_symm_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, differentiableWithinAt_piLp, hasStrictFDerivAt_ofLp, Matrix.cstar_norm_def, continuousLinearEquiv_apply, Matrix.l2_opNorm_def, Matrix.toEuclideanLin_toLp, closure_halfSpace, DiffeologicalSpace.CorePlotsOn.isPlotOn_univ, finrank_euclideanSpace_fin, InnerProductSpace.symm_toEuclideanLin_rankOne, interior_euclideanQuadrant, IccLeftChart_extend_bot_mem_frontier, DiffeologicalSpace.isOpen_iff_preimages_plots, hasStrictFDerivAt_toLp, hasStrictFDerivAt_euclidean
|
uniformEquiv π | CompOp | 2 mathmath: toEquiv_uniformEquiv, toHomeomorph_uniformEquiv
|
uniformSpace π | CompOp | 12 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Matrix.cstar_nnnorm_def, completeSpace, toEquiv_uniformEquiv, Matrix.toEuclideanCLM_toLp, Matrix.ofLp_toEuclideanCLM, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, toHomeomorph_uniformEquiv, isUniformInducing_toLp, uniformContinuous_ofLp, uniformContinuous_toLp, Matrix.cstar_norm_def
|