Documentation Verification Report

PiLp

πŸ“ Source: Mathlib/Analysis/Normed/Lp/PiLp.lean

Statistics

MetricCount
DefinitionspiLpCongrLeft, piLpCongrRight, piLpCurry, PiLp, basisFun, bornology, continuousLinearEquiv, equivβ‚—α΅’, homeomorph, instDist, instEDist, instEMetricSpace, instMetricSpace, instNorm, instPseudoEMetricSpace, instPseudoMetricSpace, normedAddCommGroup, normedAddCommGroupToPi, normedSpace, normedSpaceSeminormedAddCommGroupToPi, proj, projβ‚—, pseudoEmetricAux, pseudoMetricAux, pseudoMetricSpaceToPi, seminormedAddCommGroup, seminormedAddCommGroupToPi, sumPiLpEquivProdLpPiLp, topologicalSpace, uniformEquiv, uniformSpace, instCoeFunPiLpForall, instInhabitedPiLp
33
TheoremspiLpCongrLeft_apply, piLpCongrLeft_single, piLpCongrLeft_symm, piLpCongrRight_apply, piLpCongrRight_refl, piLpCongrRight_single, piLpCongrRight_symm, piLpCurry_apply, piLpCurry_symm_apply, add_apply, antilipschitzWith_ofLp, antilipschitzWith_toLp, basisFun_apply, basisFun_eq_pi_basisFun, basisFun_equivFun, basisFun_map, basisFun_repr, basis_toMatrix_basisFun_mul, coe_continuousLinearEquiv, coe_symm_continuousLinearEquiv, completeSpace, continuousLinearEquiv_apply, continuousLinearEquiv_symm_apply, continuous_apply, continuous_ofLp, continuous_toLp, dist_apply_le, dist_eq_card, dist_eq_iSup, dist_eq_of_L1, dist_eq_of_L2, dist_eq_sum, dist_pseudoMetricSpaceToPi, dist_sq_eq_of_L2, dist_toLp_single_same, edist_apply_le, edist_comm, edist_eq_card, edist_eq_iSup, edist_eq_of_L1, edist_eq_of_L2, edist_eq_sum, edist_self, edist_toLp_single_same, enorm_apply_le, ext, ext_iff, iSup_edist_ne_top_aux, instIsBoundedSMul, instNormSMulClass, instProdT0Space, isBoundedSMulSeminormedAddCommGroupToPi, isOpenMap_apply, isUniformInducing_toLp, isometry_ofLp_infty, lipschitzWith_ofLp, lipschitzWith_toLp, neg_apply, nndist_apply_le, nndist_eq_iSup, nndist_eq_of_L1, nndist_eq_of_L2, nndist_eq_sum, nndist_toLp_single_same, nnnorm_apply_le, nnnorm_eq_ciSup, nnnorm_eq_of_L1, nnnorm_eq_of_L2, nnnorm_eq_sum, nnnorm_ofLp, nnnorm_seminormedAddCommGroupToPi, nnnorm_toLp, nnnorm_toLp_const, nnnorm_toLp_const', nnnorm_toLp_one, nnnorm_toLp_single, normSMulClassSeminormedAddCommGroupToPi, norm_apply_le, norm_eq_card, norm_eq_ciSup, norm_eq_of_L1, norm_eq_of_L2, norm_eq_of_nat, norm_eq_sum, norm_ofLp, norm_seminormedAddCommGroupToPi, norm_sq_eq_of_L2, norm_toLp, norm_toLp_const, norm_toLp_const', norm_toLp_one, norm_toLp_single, proj_apply, projβ‚—_apply, secondCountableTopology, smul_apply, sub_apply, sumPiLpEquivProdLpPiLp_apply_ofLp, sumPiLpEquivProdLpPiLp_symm_apply_ofLp, toEquiv_homeomorph, toEquiv_uniformEquiv, toHomeomorph_uniformEquiv, toLp_apply, uniformContinuous_ofLp, uniformContinuous_toLp, zero_apply
106
Total139

LinearIsometryEquiv

Definitions

NameCategoryTheorems
piLpCongrLeft πŸ“–CompOp
4 mathmath: piLpCongrLeft_apply, EuclideanSpace.piLpCongrLeft_single, piLpCongrLeft_single, piLpCongrLeft_symm
piLpCongrRight πŸ“–CompOp
4 mathmath: piLpCongrRight_symm, piLpCongrRight_apply, piLpCongrRight_single, piLpCongrRight_refl
piLpCurry πŸ“–CompOp
2 mathmath: piLpCurry_apply, piLpCurry_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
piLpCongrLeft_apply πŸ“–mathematicalβ€”WithLp.ofLp
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
piLpCongrLeft
Equiv
Equiv.instEquivLike
Equiv.piCongrLeft'
β€”RingHomInvPair.ids
piLpCongrLeft_single πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
piLpCongrLeft
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Equiv
Equiv.instEquivLike
β€”PiLp.ext
RingHomInvPair.ids
Equiv.symm_apply_apply
piLpCongrLeft_symm πŸ“–mathematicalβ€”symm
PiLp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.Function.module
AddCommGroup.toAddCommMonoid
piLpCongrLeft
Equiv.symm
β€”ext
RingHomInvPair.ids
PiLp.ext
Equiv.piCongrLeft'_symm
piLpCongrRight_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
piLpCongrRight
WithLp.toLp
WithLp.ofLp
β€”RingHomInvPair.ids
piLpCongrRight_refl πŸ“–mathematicalβ€”piLpCongrRight
refl
PiLp
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
β€”RingHomInvPair.ids
piLpCongrRight_single πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
EquivLike.toFunLike
instEquivLike
piLpCongrRight
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”RingHomInvPair.ids
PiLp.ext
Pi.apply_single
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
SemilinearIsometryClass.toSemilinearMapClass
SemilinearIsometryEquivClass.toSemilinearIsometryClass
instSemilinearIsometryEquivClass
piLpCongrRight_symm πŸ“–mathematicalβ€”symm
PiLp
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp.seminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
piLpCongrRight
β€”RingHomInvPair.ids
piLpCurry_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
Sigma.instFintype
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
EquivLike.toFunLike
instEquivLike
piLpCurry
WithLp.toLp
Sigma.curry
WithLp.ofLp
β€”RingHomInvPair.ids
piLpCurry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
PiLp.seminormedAddCommGroup
Sigma.instFintype
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
EquivLike.toFunLike
instEquivLike
symm
piLpCurry
WithLp.toLp
Sigma.uncurry
WithLp.ofLp
β€”RingHomInvPair.ids

PiLp

Definitions

NameCategoryTheorems
basisFun πŸ“–CompOp
9 mathmath: basisFun_equivFun, EuclideanSpace.basisFun_toBasis, basisFun_repr, basisFun_apply, Matrix.toEuclideanLin_eq_toLin, basisFun_eq_pi_basisFun, basis_toMatrix_basisFun_mul, basisFun_map, Matrix.toLpLin_eq_toLin
bornology πŸ“–CompOpβ€”
continuousLinearEquiv πŸ“–CompOp
11 mathmath: continuousLinearEquiv_symm_apply, coe_continuousLinearEquiv, MeasureTheory.charFunDual_pi', hasFDerivAt_toLp, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', hasFDerivAt_ofLp, MeasureTheory.charFunDual_eq_pi_iff', coe_symm_continuousLinearEquiv, hasStrictFDerivAt_ofLp, continuousLinearEquiv_apply, hasStrictFDerivAt_toLp
equivβ‚—α΅’ πŸ“–CompOpβ€”
homeomorph πŸ“–CompOp
2 mathmath: toEquiv_homeomorph, toHomeomorph_uniformEquiv
instDist πŸ“–CompOp
12 mathmath: dist_eq_card, EuclideanSpace.dist_single_same, dist_eq_of_L1, dist_pseudoMetricSpaceToPi, dist_eq_iSup, dist_apply_le, dist_toLp_single_same, dist_sq_eq_of_L2, EuclideanSpace.dist_eq, dist_eq_of_L2, EuclideanSpace.dist_sq_eq, dist_eq_sum
instEDist πŸ“–CompOp
11 mathmath: edist_self, edist_eq_sum, EuclideanSpace.edist_single_same, edist_eq_iSup, edist_apply_le, edist_eq_card, edist_toLp_single_same, EuclideanSpace.edist_eq, edist_eq_of_L1, edist_comm, edist_eq_of_L2
instEMetricSpace πŸ“–CompOp
2 mathmath: Matrix.l2_opNNNorm_def, Matrix.l2_opNorm_def
instMetricSpace πŸ“–CompOpβ€”
instNorm πŸ“–CompOp
30 mathmath: Matrix.frobenius_norm_replicateCol, norm_toLp_const', Matrix.l2_opNorm_mulVec, norm_toLp_one, norm_ofLp, EuclideanSpace.norm_sq_eq, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, norm_toLp_single, EuclideanSpace.norm_single, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, InnerProductGeometry.norm_toLp_symm_crossProduct, instNormSMulClass, Behrend.norm_of_mem_sphere, norm_eq_sum, InnerProductGeometry.norm_ofLp_crossProduct, norm_sq_eq_of_L2, norm_eq_of_L1, norm_eq_ciSup, EuclideanSpace.norm_eq, norm_seminormedAddCommGroupToPi, norm_eq_of_nat, norm_toLp_const, norm_apply_le, Matrix.frobenius_norm_diagonal, equiv_lpPiLp_norm, norm_toLp, norm_eq_of_L2, Matrix.frobenius_norm_replicateRow, Quaternion.norm_toLp_equivTuple, norm_eq_card
instPseudoEMetricSpace πŸ“–CompOp
5 mathmath: lipschitzWith_toLp, antilipschitzWith_toLp, lipschitzWith_ofLp, antilipschitzWith_ofLp, isometry_ofLp_infty
instPseudoMetricSpace πŸ“–CompOp
31 mathmath: Matrix.l2_opNorm_toEuclideanCLM, nndist_eq_sum, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, EuclideanSpace.closedBall_zero_eq, Matrix.cstar_nnnorm_def, Behrend.sphere_subset_preimage_metric_sphere, EuclideanSpace.nndist_eq, Euclidean.closedBall_eq_image, EuclideanSpace.volume_closedBall_fin_three, nndist_toLp_single_same, nndist_apply_le, Matrix.toEuclideanCLM_toLp, EuclideanSpace.volume_closedBall_fin_two, EuclideanSpace.sphere_zero_eq, Matrix.ofLp_toEuclideanCLM, Matrix.l2_opNNNorm_def, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, EuclideanSpace.volume_ball_fin_three, Euclidean.closedBall_eq_preimage, EuclideanSpace.ball_zero_eq, EuclideanSpace.volume_ball_fin_two, Euclidean.ball_eq_preimage, EuclideanSpace.volume_ball, Matrix.cstar_norm_def, Matrix.l2_opNorm_def, EuclideanSpace.nndist_single_same, instIsBoundedSMul, EuclideanSpace.volume_closedBall, nndist_eq_of_L2, nndist_eq_iSup, nndist_eq_of_L1
normedAddCommGroup πŸ“–CompOp
141 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Pi.comul_eq_adjoint, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, contDiff_toLp, contDiffOn_piLp', Matrix.spectrum_toEuclideanLin, Matrix.cstar_nnnorm_def, contDiff_piLp', EuclideanSpace.basisFun_toBasis, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, contMDiff_neg_sphere, SmoothBumpCovering.exists_immersion_euclidean, EuclideanSpace.basisFun_apply, ProbabilityTheory.HasGaussianLaw.toLp_pi, Matrix.IsHermitian.eigenvalues_eq, instIsManifoldRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc, Icc_isBoundaryPoint_bot, OrthonormalBasis.measurePreserving_repr, Matrix.IsHermitian.eigenvectorUnitary_col_eq, Matrix.toEuclideanLin_apply, mfderivWithin_projIcc_one, Euclidean.closedBall_eq_image, MeasureTheory.charFunDual_pi', Pi.counit_eq_adjoint, ProbabilityTheory.covarianceBilin_apply_basisFun_self, Icc_isInteriorPoint_interior, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, EuclideanSpace.instFactEqNatFinrankFin, mfderivWithin_comp_projIcc_one, contDiffWithinAt_euclidean, contDiffAt_piLp_apply, EuclideanSpace.volume_closedBall_fin_three, IccLeftChart_extend_interior_pos, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, Matrix.IsHermitian.eigenvectorUnitary_mulVec, contMDiff_coe_sphere, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, volume_preserving_toLp, InnerProductGeometry.norm_toLp_symm_crossProduct, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, Matrix.toEuclideanCLM_toLp, EuclideanSpace.volume_closedBall_fin_two, Pi.orthonormalBasis_apply, Matrix.piLp_ofLp_toEuclideanLin, frontier_range_modelWithCornersEuclideanHalfSpace, EuclideanSpace.instIsManifoldSphere, contMDiff_subtype_coe_Icc, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, EuclideanHalfSpace.convex, contDiffAt_piLp', contDiffAt_euclidean, finrank_euclideanSpace, mfderiv_coe_sphere_injective, contDiffOn_euclidean, volume_preserving_ofLp, InnerProductGeometry.norm_ofLp_crossProduct, Matrix.ofLp_toEuclideanCLM, Matrix.isPositive_toEuclideanLin_iff, EuclideanQuadrant.convex, contDiff_piLp, IccLeftChart_extend_bot, Matrix.l2_opNNNorm_def, EuclideanSpace.basisFun_repr, OrthonormalBasis.equiv_apply_euclideanSpace, Manifold.riemannianEDist_def, modelWithCornersEuclideanHalfSpace_zero, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, Matrix.IsHermitian.eigenvectorUnitary_apply, contDiffOn_piLp, ProbabilityTheory.covarianceBilin_apply_pi, Pi.orthonormalBasis.toBasis, contMDiffWithinAt_comp_projIcc_iff, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, EuclideanSpace.volume_ball_fin_three, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, ProbabilityTheory.covarianceBilin_apply_basisFun, Diffeology.isPlot_iff_contDiff, OrthonormalBasis.measurePreserving_repr_symm, analyticOn_ofLp, oneTangentSpaceIcc_def, IccRightChart_extend_top_mem_frontier, Matrix.IsHermitian.eigenvectorUnitary_coe, Matrix.toEuclideanLin_eq_toLin, analyticOn_toLp, Euclidean.closedBall_eq_preimage, Matrix.isHermitian_iff_isSymmetric, EuclideanSpace.basisFun_inner, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, EuclideanSpace.volume_preserving_symm_measurableEquiv_toLp, mdifferentiableWithinAt_comp_projIcc_iff, Diffeology.IsContDiffCompatible.isPlot_iff, range_mfderiv_coe_sphere, contDiffOn_piLp_apply, Matrix.ofLp_toEuclideanLin_apply, EuclideanSpace.volume_ball_fin_two, EuclideanSpace.inner_basisFun_real, iccLeftChart_extend_zero, Euclidean.ball_eq_preimage, EuclideanSpace.volume_ball, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', Diffeology.IsPlot.contDiff, contDiff_ofLp, contDiff_piLp_apply, contDiffWithinAt_piLp, MeasureTheory.charFunDual_eq_pi_iff', Matrix.toEuclideanLin_apply_piLp_toLp, contMDiffOn_comp_projIcc_iff, volume_euclideanSpace_eq_dirac, exists_embedding_euclidean_of_compact, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, OrthonormalBasis.coe_equiv_euclideanSpace, Matrix.IsHermitian.eigenvectorUnitary_transpose_apply, range_modelWithCornersEuclideanHalfSpace, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, Matrix.toEuclideanLin_eq_toLin_orthonormal, contDiffAt_piLp, Matrix.cstar_norm_def, ContMDiff.codRestrict_sphere, mfderiv_subtype_coe_Icc_one, MeasureTheory.eval_integral_piLp, Matrix.IsHermitian.mulVec_eigenvectorBasis, Matrix.l2_opNorm_def, Matrix.toEuclideanLin_toLp, OrthonormalBasis.measurePreserving_measurableEquiv, Pi.orthonormalBasis_repr, contDiffWithinAt_piLp', IccRightChart_extend_top, boundary_Icc, contDiffWithinAt_piLp_apply, EuclideanSpace.volume_closedBall, finrank_euclideanSpace_fin, boundary_product, Matrix.IsHermitian.star_eigenvectorUnitary_mulVec, InnerProductSpace.symm_toEuclideanLin_rankOne, contDiff_euclidean, IccLeftChart_extend_bot_mem_frontier, Icc_isBoundaryPoint_top, instIsManifoldIcc, contMDiffOn_projIcc, contMDiff_circleExp
normedAddCommGroupToPi πŸ“–CompOpβ€”
normedSpace πŸ“–CompOp
74 mathmath: Matrix.l2_opNorm_toEuclideanCLM, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, contDiff_toLp, contDiffOn_piLp', Matrix.cstar_nnnorm_def, contDiff_piLp', contMDiff_neg_sphere, SmoothBumpCovering.exists_immersion_euclidean, instIsManifoldRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc, Icc_isBoundaryPoint_bot, mfderivWithin_projIcc_one, MeasureTheory.charFunDual_pi', Icc_isInteriorPoint_interior, mfderivWithin_comp_projIcc_one, contDiffWithinAt_euclidean, contDiffAt_piLp_apply, IccLeftChart_extend_interior_pos, contMDiff_coe_sphere, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, frontier_range_modelWithCornersEuclideanHalfSpace, EuclideanSpace.instIsManifoldSphere, contMDiff_subtype_coe_Icc, contDiffAt_piLp', contDiffAt_euclidean, mfderiv_coe_sphere_injective, contDiffOn_euclidean, contDiff_piLp, IccLeftChart_extend_bot, Matrix.l2_opNNNorm_def, Manifold.riemannianEDist_def, modelWithCornersEuclideanHalfSpace_zero, contDiffOn_piLp, contMDiffWithinAt_comp_projIcc_iff, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, Diffeology.isPlot_iff_contDiff, analyticOn_ofLp, oneTangentSpaceIcc_def, IccRightChart_extend_top_mem_frontier, analyticOn_toLp, mdifferentiableWithinAt_comp_projIcc_iff, Diffeology.IsContDiffCompatible.isPlot_iff, range_mfderiv_coe_sphere, contDiffOn_piLp_apply, iccLeftChart_extend_zero, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', Diffeology.IsPlot.contDiff, contDiff_ofLp, contDiff_piLp_apply, contDiffWithinAt_piLp, MeasureTheory.charFunDual_eq_pi_iff', contMDiffOn_comp_projIcc_iff, exists_embedding_euclidean_of_compact, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, range_modelWithCornersEuclideanHalfSpace, contDiffAt_piLp, Matrix.cstar_norm_def, ContMDiff.codRestrict_sphere, mfderiv_subtype_coe_Icc_one, MeasureTheory.eval_integral_piLp, Matrix.l2_opNorm_def, contDiffWithinAt_piLp', IccRightChart_extend_top, boundary_Icc, contDiffWithinAt_piLp_apply, boundary_product, InnerProductSpace.symm_toEuclideanLin_rankOne, contDiff_euclidean, IccLeftChart_extend_bot_mem_frontier, Icc_isBoundaryPoint_top, instIsManifoldIcc, contMDiffOn_projIcc, contMDiff_circleExp
normedSpaceSeminormedAddCommGroupToPi πŸ“–CompOpβ€”
proj πŸ“–CompOp
7 mathmath: hasStrictFDerivAt_piLp, hasFDerivWithinAt_piLp, hasFDerivWithinAt_euclidean, hasStrictFDerivAt_apply, hasFDerivAt_apply, proj_apply, hasStrictFDerivAt_euclidean
projβ‚— πŸ“–CompOp
1 mathmath: projβ‚—_apply
pseudoEmetricAux πŸ“–CompOpβ€”
pseudoMetricAux πŸ“–CompOpβ€”
pseudoMetricSpaceToPi πŸ“–CompOp
2 mathmath: isBoundedSMulSeminormedAddCommGroupToPi, dist_pseudoMetricSpaceToPi
seminormedAddCommGroup πŸ“–CompOp
98 mathmath: Matrix.l2_opNorm_toEuclideanCLM, OrthonormalBasis.singleton_repr, DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply, LinearIsometryEquiv.piLpCongrRight_symm, EuclideanSpace.orthonormal_single, OrthonormalBasis.repr_injective, Matrix.cstar_nnnorm_def, LinearMap.IsSymmetric.diagonalization_apply_self_apply, EuclideanSpace.inner_single_left, GaussianFourier.integral_cexp_neg_mul_sq_norm_add_of_euclideanSpace, OrthonormalBasis.repr_self, LinearIsometryEquiv.piLpCongrRight_apply, OrthonormalBasis.measurePreserving_repr, nnnorm_eq_of_L2, MeasureTheory.integrable_piLp_iff, Quaternion.linearIsometryEquivTuple_symm_apply, LDL.lowerInv_orthogonal, GaussianFourier.integrable_cexp_neg_mul_sq_norm_add_of_euclideanSpace, nnnorm_toLp_one, sumPiLpEquivProdLpPiLp_symm_apply_ofLp, Module.Basis.coe_toOrthonormalBasis_repr, LinearIsometryEquiv.piLpCongrLeft_apply, OrthonormalBasis.coe_ofRepr, EuclideanSpace.nnnorm_single, Complex.orthonormalBasisOneI_repr_apply, nnnorm_toLp_single, Matrix.toEuclideanCLM_toLp, nnnorm_toLp_const', LinearMap.IsSymmetric.diagonalization_symm_apply, OrthonormalBasis.tensorProduct_repr_tmul_apply', enorm_apply_le, Matrix.l2_opNNNorm_mulVec, nnnorm_apply_le, OrthonormalBasis.equiv_apply, Module.Basis.coe_toOrthonormalBasis_repr_symm, MeasureTheory.charFun_pi, OrthonormalBasis.repr_apply_apply, LinearIsometryEquiv.piLpCurry_apply, LinearMap.toMatrix_innerβ‚›β‚—_apply, RCLike.wInner_one_eq_inner, LinearIsometryEquiv.piLpCongrRight_single, Matrix.ofLp_toEuclideanCLM, nnnorm_eq_ciSup, LinearMap.IsSymmetric.eigenvectorBasis_apply_self_apply, Matrix.l2_opNNNorm_def, EuclideanSpace.basisFun_repr, Complex.orthonormalBasisOneI_repr_symm_apply, LinearIsometryEquiv.piLpCongrRight_refl, coe_lpPiLpβ‚—α΅’, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, Matrix.frobenius_nnnorm_replicateRow, EuclideanSpace.inner_eq_star_dotProduct, OrthonormalBasis.sum_repr_symm, Matrix.frobenius_nnnorm_replicateCol, nnnorm_toLp, NumberField.mixedEmbedding.euclidean.instIsZLatticeRealMixedSpaceIntegerLattice, Matrix.frobenius_nnnorm_diagonal, MeasureTheory.memLp_piLp_iff, OrthonormalBasis.measurePreserving_repr_symm, EuclideanSpace.piLpCongrLeft_single, LinearIsometryEquiv.piLpCurry_symm_apply, Matrix.isHermitian_iff_isSymmetric, EuclideanSpace.basisFun_inner, InnerProductSpace.toMatrix_rankOne, coe_lpPiLpβ‚—α΅’_symm, EuclideanSpace.inner_basisFun_real, MeasureTheory.Integrable.of_eval_piLp, OrthonormalBasis.repr_symm_single, toMatrix_innerSL_apply, nnnorm_eq_of_L1, ProbabilityTheory.iIndepFun_iff_charFun_pi, InnerProductSpace.gramSchmidtOrthonormalBasis_inv_triangular', MeasureTheory.MemLp.of_eval_piLp, OrthonormalBasis.coe_toBasis_repr, OrthonormalBasis.sum_repr, LinearIsometryEquiv.piLpCongrLeft_single, OrthonormalBasis.coe_toBasis_repr_apply, EuclideanSpace.inner_toLp_toLp, nnnorm_eq_sum, EuclideanSpace.nnnorm_eq, inner_apply, EuclideanSpace.inner_single_right, Matrix.cstar_norm_def, inner_matrix_row_row, Quaternion.linearIsometryEquivTuple_apply, nnnorm_seminormedAddCommGroupToPi, nnnorm_toLp_const, Matrix.l2_opNorm_def, LinearIsometryEquiv.piLpCongrLeft_symm, Pi.orthonormalBasis_repr, MeasureTheory.charFun_eq_pi_iff, OrthonormalBasis.repr_reindex, InnerProductSpace.symm_toEuclideanLin_rankOne, OrthonormalBasis.tensorProduct_repr_tmul_apply, RCLike.inner_eq_wInner_one, nnnorm_ofLp, sumPiLpEquivProdLpPiLp_apply_ofLp, inner_matrix_col_col
seminormedAddCommGroupToPi πŸ“–CompOp
3 mathmath: norm_seminormedAddCommGroupToPi, normSMulClassSeminormedAddCommGroupToPi, nnnorm_seminormedAddCommGroupToPi
sumPiLpEquivProdLpPiLp πŸ“–CompOp
2 mathmath: sumPiLpEquivProdLpPiLp_symm_apply_ofLp, sumPiLpEquivProdLpPiLp_apply_ofLp
topologicalSpace πŸ“–CompOp
94 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Pi.comul_eq_adjoint, continuousLinearEquiv_symm_apply, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, Matrix.spectrum_toEuclideanLin, Matrix.cstar_nnnorm_def, Matrix.l2_opNorm_mulVec, frontier_halfSpace, DiffeologicalSpace.CorePlotsOn.isOpen_iff_preimages_plots, SmoothBumpCovering.exists_immersion_euclidean, ProbabilityTheory.HasGaussianLaw.toLp_pi, stereographic'_source, MeasureTheory.integrable_piLp_iff, instProdT0Space, coe_continuousLinearEquiv, Matrix.toEuclideanLin_apply, Euclidean.closedBall_eq_image, MeasureTheory.charFunDual_pi', Pi.counit_eq_adjoint, EuclideanSpace.instFactEqNatFinrankFin, differentiable_euclidean, continuous_toLp, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, Matrix.toEuclideanCLM_toLp, hasFDerivAt_toLp, Matrix.piLp_ofLp_toEuclideanLin, stereographic'_target, Matrix.l2_opNNNorm_mulVec, frontier_range_modelWithCornersEuclideanHalfSpace, interior_halfSpace, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, EuclideanHalfSpace.convex, hasStrictFDerivAt_piLp, finrank_euclideanSpace, hasFDerivWithinAt_piLp, differentiableOn_piLp, closure_open_halfSpace, Matrix.ofLp_toEuclideanCLM, differentiableWithinAt_euclidean, Matrix.isPositive_toEuclideanLin_iff, isOpenMap_apply, EuclideanQuadrant.convex, differentiableAt_piLp, Matrix.l2_opNNNorm_def, borelSpace, continuous_apply, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, NumberField.mixedEmbedding.euclidean.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, MeasureTheory.memLp_piLp_iff, toEquiv_homeomorph, IccRightChart_extend_top_mem_frontier, hasFDerivWithinAt_euclidean, secondCountableTopology, hasStrictFDerivAt_apply, Matrix.toEuclideanLin_eq_toLin, Euclidean.closedBall_eq_preimage, Matrix.isHermitian_iff_isSymmetric, differentiableAt_euclidean, Matrix.toEuclideanLin_conjTranspose_eq_adjoint, continuous_ofLp, Diffeology.isOpen_iff_preimages_plots, differentiableOn_euclidean, Diffeology.IsPlot.continuous, differentiable_piLp, Matrix.ofLp_toEuclideanLin_apply, MeasureTheory.Integrable.of_eval_piLp, Euclidean.ball_eq_preimage, interior_range_modelWithCornersEuclideanHalfSpace, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', hasFDerivAt_ofLp, MeasureTheory.charFunDual_eq_pi_iff', MeasureTheory.MemLp.of_eval_piLp, Matrix.toEuclideanLin_apply_piLp_toLp, hasFDerivAt_apply, proj_apply, exists_embedding_euclidean_of_compact, coe_symm_continuousLinearEquiv, stereographic'_symm_apply, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, differentiableWithinAt_piLp, hasStrictFDerivAt_ofLp, Matrix.cstar_norm_def, continuousLinearEquiv_apply, Matrix.l2_opNorm_def, Matrix.toEuclideanLin_toLp, closure_halfSpace, DiffeologicalSpace.CorePlotsOn.isPlotOn_univ, finrank_euclideanSpace_fin, InnerProductSpace.symm_toEuclideanLin_rankOne, interior_euclideanQuadrant, IccLeftChart_extend_bot_mem_frontier, DiffeologicalSpace.isOpen_iff_preimages_plots, hasStrictFDerivAt_toLp, hasStrictFDerivAt_euclidean
uniformEquiv πŸ“–CompOp
2 mathmath: toEquiv_uniformEquiv, toHomeomorph_uniformEquiv
uniformSpace πŸ“–CompOp
12 mathmath: Matrix.l2_opNorm_toEuclideanCLM, Matrix.cstar_nnnorm_def, completeSpace, toEquiv_uniformEquiv, Matrix.toEuclideanCLM_toLp, Matrix.ofLp_toEuclideanCLM, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, toHomeomorph_uniformEquiv, isUniformInducing_toLp, uniformContinuous_ofLp, uniformContinuous_toLp, Matrix.cstar_norm_def

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”WithLp.ofLp
PiLp
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
β€”β€”
antilipschitzWith_ofLp πŸ“–mathematicalβ€”AntilipschitzWith
WithLp
instPseudoEMetricSpace
pseudoEMetricSpacePi
NNReal
Real
NNReal.instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
WithLp.ofLp
β€”β€”
antilipschitzWith_toLp πŸ“–mathematicalβ€”AntilipschitzWith
WithLp
pseudoEMetricSpacePi
instPseudoEMetricSpace
NNReal
instOneNNReal
WithLp.toLp
β€”LipschitzWith.to_rightInverse
lipschitzWith_ofLp
WithLp.ofLp_toLp
basisFun_apply πŸ“–mathematicalβ€”DFunLike.coe
Module.Basis
PiLp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Ring.toAddCommGroup
WithLp.instModule
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
Module.Basis.instFunLike
basisFun
WithLp.toLp
Pi.single
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”RingHomInvPair.ids
Module.Basis.coe_ofEquivFun
basisFun_eq_pi_basisFun πŸ“–mathematicalβ€”basisFun
Module.Basis.map
WithLp
Ring.toSemiring
Pi.addCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Pi.Function.module
Semiring.toModule
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Ring.toAddCommGroup
WithLp.instModule
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Pi.basisFun
LinearEquiv.symm
RingHom.id
RingHomInvPair.ids
WithLp.linearEquiv
β€”β€”
basisFun_equivFun πŸ“–mathematicalβ€”Module.Basis.equivFun
PiLp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Ring.toAddCommGroup
WithLp.instModule
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
basisFun
WithLp.linearEquiv
β€”Module.Basis.equivFun_ofEquivFun
basisFun_map πŸ“–mathematicalβ€”Module.Basis.map
PiLp
Ring.toSemiring
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Ring.toAddCommGroup
WithLp.instModule
Pi.Function.module
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
basisFun
WithLp.linearEquiv
Pi.basisFun
β€”β€”
basisFun_repr πŸ“–mathematicalβ€”DFunLike.coe
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Ring.toSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
PiLp
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Ring.toAddCommGroup
Finsupp.instAddCommMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
WithLp.instModule
Pi.Function.module
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Semiring.toModule
Finsupp.module
EquivLike.toFunLike
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
basisFun
WithLp.ofLp
β€”RingHomInvPair.ids
basis_toMatrix_basisFun_mul πŸ“–mathematicalβ€”Matrix
Matrix.instHMulOfFintypeOfMulOfAddCommMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalSeminormedCommRing.toNonUnitalCommRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NonUnitalNonAssocSemiring.toAddCommMonoid
Module.Basis.toMatrix
PiLp
CommRing.toCommSemiring
SeminormedCommRing.toCommRing
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
WithLp.instModule
CommSemiring.toSemiring
Pi.Function.module
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
Ring.toSemiring
SeminormedRing.toRing
SeminormedCommRing.toSeminormedRing
Semiring.toModule
DFunLike.coe
Module.Basis
Ring.toAddCommGroup
Module.Basis.instFunLike
basisFun
Finite.of_fintype
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Matrix.of
Finsupp
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Finsupp.instFunLike
LinearEquiv
RingHom.id
RingHomInvPair.ids
Finsupp.instAddCommMonoid
Finsupp.module
DFinsupp.instEquivLikeLinearEquiv
Module.Basis.repr
WithLp.toLp
Matrix.transpose
β€”Finite.of_fintype
RingHomInvPair.ids
basis_toMatrix_basisFun_mul
LinearEquiv.symm_apply_apply
Module.Basis.toMatrix_map
coe_continuousLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.topologicalSpace
Pi.addCommMonoid
WithLp.instModule
Pi.module
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
continuousLinearEquiv
WithLp.ofLp
β€”RingHomInvPair.ids
coe_symm_continuousLinearEquiv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.addCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
PiLp
topologicalSpace
WithLp.instAddCommGroup
Pi.addCommGroup
Pi.module
WithLp.instModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
continuousLinearEquiv
WithLp.toLp
β€”RingHomInvPair.ids
completeSpace πŸ“–mathematicalCompleteSpacePiLp
uniformSpace
β€”UniformEquiv.completeSpace_iff
Pi.complete
continuousLinearEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
PiLp
topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.topologicalSpace
Pi.addCommMonoid
WithLp.instModule
Pi.module
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
continuousLinearEquiv
WithLp.ofLp
β€”RingHomInvPair.ids
continuousLinearEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Pi.addCommMonoid
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
PiLp
topologicalSpace
WithLp.instAddCommGroup
Pi.addCommGroup
Pi.module
WithLp.instModule
EquivLike.toFunLike
ContinuousLinearEquiv.equivLike
ContinuousLinearEquiv.symm
continuousLinearEquiv
WithLp.toLp
β€”RingHomInvPair.ids
continuous_apply πŸ“–mathematicalβ€”Continuous
PiLp
topologicalSpace
WithLp.ofLp
β€”Continuous.comp
continuous_apply
continuous_ofLp
continuous_ofLp πŸ“–mathematicalβ€”Continuous
WithLp
topologicalSpace
Pi.topologicalSpace
WithLp.ofLp
β€”continuous_induced_dom
continuous_toLp πŸ“–mathematicalβ€”Continuous
WithLp
Pi.topologicalSpace
topologicalSpace
WithLp.toLp
β€”continuous_induced_rng
continuous_id
dist_apply_le πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
WithLp.ofLp
PiLp
instDist
β€”nndist_apply_le
dist_eq_card πŸ“–mathematicalβ€”Dist.dist
PiLp
ENNReal
instZeroENNReal
instDist
Real
Real.instNatCast
Finset.card
Set.Finite.toFinset
setOf
WithLp.ofLp
Real.instZero
Set.toFinite
Subtype.finite
Finite.of_fintype
Set
Set.instMembership
β€”β€”
dist_eq_iSup πŸ“–mathematicalβ€”Dist.dist
PiLp
Top.top
ENNReal
instTopENNReal
instDist
iSup
Real
Real.instSupSet
WithLp.ofLp
β€”β€”
dist_eq_of_L1 πŸ“–mathematicalβ€”Dist.dist
PiLp
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
instDist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
β€”fact_one_le_one_ennreal
dist_eq_norm
Finset.sum_congr
norm_eq_of_L1
dist_eq_of_L2 πŸ“–mathematicalβ€”Dist.dist
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
instDist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Real.sqrt
Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
Monoid.toNatPow
Real.instMonoid
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
dist_eq_norm
Finset.sum_congr
norm_eq_of_L2
dist_eq_sum πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal.toReal
Dist.dist
PiLp
instDist
Real.instPow
Finset.sum
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”ENNReal.toReal_pos_iff
LT.lt.ne'
LT.lt.ne
dist_pseudoMetricSpaceToPi πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpaceToPi
WithLp
instDist
WithLp.toLp
β€”β€”
dist_sq_eq_of_L2 πŸ“–mathematicalβ€”Real
Monoid.toNatPow
Real.instMonoid
Dist.dist
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
instDist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
dist_eq_norm
Finset.sum_congr
norm_sq_eq_of_L2
dist_toLp_single_same πŸ“–mathematicalβ€”Dist.dist
WithLp
instDist
PseudoMetricSpace.toDist
SeminormedAddCommGroup.toPseudoMetricSpace
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”nndist_toLp_single_same
edist_apply_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
WithLp.ofLp
PiLp
instEDist
β€”β€”
edist_comm πŸ“–mathematicalβ€”EDist.edist
PiLp
instEDist
PseudoEMetricSpace.toEDist
β€”ENNReal.trichotomy
Set.toFinite
Subtype.finite
Finite.of_fintype
PseudoEMetricSpace.edist_comm
edist_eq_card
Set.Finite.toFinset.congr_simp
edist_eq_sum
Finset.sum_congr
edist_eq_card πŸ“–mathematicalβ€”EDist.edist
PiLp
ENNReal
instZeroENNReal
instEDist
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
Set.Finite.toFinset
setOf
WithLp.ofLp
Set.toFinite
Subtype.finite
Finite.of_fintype
Set
Set.instMembership
β€”β€”
edist_eq_iSup πŸ“–mathematicalβ€”EDist.edist
PiLp
Top.top
ENNReal
instTopENNReal
instEDist
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
WithLp.ofLp
β€”β€”
edist_eq_of_L1 πŸ“–mathematicalβ€”EDist.edist
PiLp
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
instEDist
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
WithLp.ofLp
β€”edist_eq_sum
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Finset.sum_congr
ENNReal.rpow_one
div_self
edist_eq_of_L2 πŸ“–mathematicalβ€”EDist.edist
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
instEDist
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Real
ENNReal.instPowReal
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
WithLp.ofLp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
β€”Nat.instAtLeastTwoHAddOfNat
edist_eq_sum
ENNReal.toReal_ofNat
Real.instIsOrderedRing
Real.instNontrivial
Finset.sum_congr
ENNReal.rpow_ofNat
one_div
edist_eq_sum πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal.toReal
EDist.edist
PiLp
instEDist
ENNReal
ENNReal.instPowReal
Finset.sum
ENNReal.instAddCommMonoid
Finset.univ
WithLp.ofLp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”ENNReal.toReal_pos_iff
LT.lt.ne'
LT.lt.ne
edist_self πŸ“–mathematicalβ€”EDist.edist
PiLp
instEDist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
β€”ENNReal.trichotomy
Set.toFinite
Subtype.finite
Finite.of_fintype
edist_eq_card
PseudoEMetricSpace.edist_self
Set.Finite.toFinset.congr_simp
Set.toFinite_toFinset
Set.toFinset_empty
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
ENNReal.iSup_zero
edist_eq_sum
Finset.sum_congr
ENNReal.zero_rpow_of_pos
Finset.sum_const_zero
one_div
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
edist_toLp_single_same πŸ“–mathematicalβ€”EDist.edist
WithLp
instEDist
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”edist_nndist
nndist_toLp_single_same
enorm_apply_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
ENorm.enorm
ContinuousENorm.toENorm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddGroup.toPseudoMetricSpace
SeminormedAddCommGroup.toSeminormedAddGroup
SeminormedAddGroup.toContinuousENorm
WithLp.ofLp
PiLp
seminormedAddCommGroup
β€”edist_zero_right
edist_apply_le
ext πŸ“–β€”WithLp.ofLpβ€”β€”WithLp.ofLp_injective
ext_iff πŸ“–mathematicalβ€”WithLp.ofLpβ€”ext
iSup_edist_ne_top_aux πŸ“–β€”β€”β€”β€”nonempty_fintype
dist_nonneg
Finite.exists_le
instIsDirectedOrder
Real.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Nonneg.isOrderedRing
Nonneg.instArchimedean
Real.instArchimedean
ne_of_lt
LE.le.trans_lt
iSup_le
PseudoMetricSpace.edist_dist
ENNReal.ofReal_eq_coe_nnreal
ENNReal.coe_lt_top
instIsBoundedSMul πŸ“–mathematicalIsBoundedSMul
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
PiLp
instPseudoMetricSpace
WithLp.instAddCommGroup
Pi.addCommGroup
WithLp.instSMul
Pi.instSMul
β€”IsBoundedSMul.of_nnnorm_smul_le
ENNReal.dichotomy
fact_one_le_top_ennreal
nnnorm_ofLp
WithLp.ofLp_smul
nnnorm_smul_le
Pi.instIsBoundedSMul
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
ENNReal.toReal_pos_iff_ne_top
nnnorm_eq_sum
one_div
NNReal.rpow_inv_le_iff
NNReal.mul_rpow
NNReal.rpow_mul
inv_mul_cancelβ‚€
LT.lt.ne'
NNReal.rpow_one
Finset.mul_sum
Finset.sum_congr
Finset.sum_le_sum
NNReal.addLeftMono
NNReal.rpow_le_rpow
le_of_lt
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
instNormSMulClass πŸ“–mathematicalNormSMulClass
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
PiLp
instNorm
WithLp.instSMul
Pi.instSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”NormSMulClass.of_nnnorm_smul
ENNReal.dichotomy
fact_one_le_top_ennreal
nnnorm_ofLp
WithLp.ofLp_smul
nnnorm_smul
Pi.instNormSMulClass
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
ENNReal.toReal_pos_iff_ne_top
nnnorm_eq_sum
one_div
NNReal.rpow_inv_eq_iff
LT.lt.ne'
NNReal.mul_rpow
NNReal.rpow_mul
inv_mul_cancelβ‚€
NNReal.rpow_one
Finset.mul_sum
Finset.sum_congr
instProdT0Space πŸ“–mathematicalT0SpacePiLp
topologicalSpace
β€”Homeomorph.t0Space
Pi.instT0Space
isBoundedSMulSeminormedAddCommGroupToPi πŸ“–mathematicalIsBoundedSMul
SeminormedRing.toPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
SeminormedRing.toRing
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
pseudoMetricSpaceToPi
Pi.instZero
Pi.instSMul
β€”dist_zero_right
dist_smul_pair
instIsBoundedSMul
dist_pair_smul
isOpenMap_apply πŸ“–mathematicalβ€”IsOpenMap
PiLp
topologicalSpace
WithLp.ofLp
β€”IsOpenMap.comp
isOpenMap_eval
Homeomorph.isOpenMap
isUniformInducing_toLp πŸ“–mathematicalβ€”IsUniformInducing
WithLp
Pi.uniformSpace
PseudoEMetricSpace.toUniformSpace
uniformSpace
WithLp.toLp
β€”AntilipschitzWith.isUniformInducing
antilipschitzWith_toLp
LipschitzWith.uniformContinuous
lipschitzWith_toLp
isometry_ofLp_infty πŸ“–mathematicalβ€”Isometry
WithLp
Top.top
ENNReal
instTopENNReal
instPseudoEMetricSpace
fact_one_le_top_ennreal
pseudoEMetricSpacePi
WithLp.ofLp
β€”le_antisymm
fact_one_le_top_ennreal
one_mul
lipschitzWith_ofLp
ENNReal.div_top
NNReal.rpow_zero
antilipschitzWith_ofLp
lipschitzWith_ofLp πŸ“–mathematicalβ€”LipschitzWith
WithLp
instPseudoEMetricSpace
pseudoEMetricSpacePi
NNReal
instOneNNReal
WithLp.ofLp
β€”β€”
lipschitzWith_toLp πŸ“–mathematicalβ€”LipschitzWith
WithLp
pseudoEMetricSpacePi
instPseudoEMetricSpace
NNReal
Real
NNReal.instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
WithLp.toLp
β€”AntilipschitzWith.to_rightInverse
antilipschitzWith_ofLp
WithLp.ofLp_toLp
neg_apply πŸ“–mathematicalβ€”WithLp.ofLp
PiLp
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
β€”β€”
nndist_apply_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
WithLp.ofLp
PiLp
instPseudoMetricSpace
β€”edist_apply_le
nndist_eq_iSup πŸ“–mathematicalβ€”NNDist.nndist
PiLp
Top.top
ENNReal
instTopENNReal
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
fact_one_le_top_ennreal
iSup
NNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
WithLp.ofLp
β€”NNReal.eq
fact_one_le_top_ennreal
NNReal.coe_iSup
dist_eq_iSup
nndist_eq_of_L1 πŸ“–mathematicalβ€”NNDist.nndist
PiLp
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
fact_one_le_one_ennreal
SeminormedAddCommGroup.toPseudoMetricSpace
Finset.sum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
WithLp.ofLp
β€”NNReal.eq
fact_one_le_one_ennreal
NNReal.coe_sum
Finset.sum_congr
dist_eq_of_L1
nndist_eq_of_L2 πŸ“–mathematicalβ€”NNDist.nndist
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
fact_one_le_two_ennreal
SeminormedAddCommGroup.toPseudoMetricSpace
DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
NNReal.eq
fact_one_le_two_ennreal
Real.coe_sqrt
NNReal.coe_sum
Finset.sum_congr
dist_eq_of_L2
nndist_eq_sum πŸ“–mathematicalβ€”NNDist.nndist
PiLp
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
NNReal
Real
NNReal.instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
WithLp.ofLp
ENNReal.toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”NNReal.eq
NNReal.coe_sum
Finset.sum_congr
dist_eq_sum
ENNReal.toReal_pos_iff_ne_top
nndist_toLp_single_same πŸ“–mathematicalβ€”NNDist.nndist
WithLp
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
SeminormedAddCommGroup.toPseudoMetricSpace
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”nndist_eq_nnnorm
WithLp.toLp_sub
Pi.single_sub
nnnorm_toLp_single
nnnorm_apply_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
WithLp.ofLp
PiLp
seminormedAddCommGroup
β€”nndist_zero_right
nndist_apply_le
nnnorm_eq_ciSup πŸ“–mathematicalβ€”NNNorm.nnnorm
PiLp
Top.top
ENNReal
instTopENNReal
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
fact_one_le_top_ennreal
iSup
NNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
WithLp.ofLp
β€”NNReal.eq
fact_one_le_top_ennreal
NNReal.coe_iSup
nnnorm_eq_of_L1 πŸ“–mathematicalβ€”NNNorm.nnnorm
PiLp
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
fact_one_le_one_ennreal
Finset.sum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
WithLp.ofLp
β€”NNReal.eq
fact_one_le_one_ennreal
NNReal.coe_sum
Finset.sum_congr
norm_eq_of_L1
nnnorm_eq_of_L2 πŸ“–mathematicalβ€”NNNorm.nnnorm
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
fact_one_le_two_ennreal
DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
NNReal.eq
fact_one_le_two_ennreal
Real.coe_sqrt
NNReal.coe_sum
Finset.sum_congr
norm_eq_of_L2
nnnorm_eq_sum πŸ“–mathematicalβ€”NNNorm.nnnorm
PiLp
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
NNReal
Real
NNReal.instPowReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Finset.univ
WithLp.ofLp
ENNReal.toReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”NNReal.eq
norm_eq_sum
ENNReal.toReal_pos_iff_ne_top
one_div
NNReal.coe_sum
Finset.sum_congr
nnnorm_ofLp πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
Pi.seminormedAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
WithLp.ofLp
Top.top
ENNReal
instTopENNReal
PiLp
seminormedAddCommGroup
fact_one_le_top_ennreal
β€”fact_one_le_top_ennreal
nnnorm_eq_ciSup
Pi.nnnorm_def
Finset.sup_univ_eq_ciSup
nnnorm_seminormedAddCommGroupToPi πŸ“–mathematicalβ€”NNNorm.nnnorm
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroupToPi
WithLp
seminormedAddCommGroup
WithLp.toLp
β€”β€”
nnnorm_toLp πŸ“–mathematicalβ€”NNNorm.nnnorm
WithLp
Top.top
ENNReal
instTopENNReal
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
fact_one_le_top_ennreal
WithLp.toLp
Pi.seminormedAddGroup
β€”fact_one_le_top_ennreal
nnnorm_ofLp
nnnorm_toLp_const πŸ“–mathematicalβ€”NNNorm.nnnorm
WithLp
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
WithLp.toLp
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”ENNReal.dichotomy
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
nnnorm_eq_sum
Finset.sum_congr
Finset.sum_const
nsmul_eq_mul
NNReal.mul_rpow
mul_one_div_cancel
NNReal.rpow_one
ENNReal.toReal_div
nnnorm_toLp_const' πŸ“–mathematicalβ€”NNNorm.nnnorm
WithLp
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
WithLp.toLp
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”em
fact_one_le_top_ennreal
nnnorm_eq_ciSup
ciSup_const
ENNReal.div_top
NNReal.rpow_zero
one_mul
nnnorm_toLp_const
nnnorm_toLp_one πŸ“–mathematicalβ€”NNNorm.nnnorm
WithLp
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
WithLp.toLp
Pi.instOne
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Real
NNReal.instPowReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”nnnorm_toLp_const
nnnorm_toLp_single πŸ“–mathematicalβ€”NNNorm.nnnorm
WithLp
SeminormedAddGroup.toNNNorm
SeminormedAddCommGroup.toSeminormedAddGroup
seminormedAddCommGroup
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”nnnorm_eq_ciSup
ciSup_eq_of_forall_le_of_forall_lt_exists_gt
Decidable.eq_or_ne
Pi.single_eq_same
le_refl
Pi.single_eq_of_ne'
nnnorm_zero
zero_le
NNReal.instCanonicallyOrderedAdd
LT.lt.trans_eq
Nat.cast_zero
LT.lt.ne'
LT.lt.trans_le
zero_lt_one
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
Fact.out
nnnorm_eq_sum
ENNReal.coe_ne_top
ENNReal.coe_toReal
Fintype.sum_eq_single
toLp_apply
Pi.single_eq_of_ne
NNReal.zero_rpow
NNReal.rpow_mul
one_div
mul_inv_cancelβ‚€
NNReal.rpow_one
normSMulClassSeminormedAddCommGroupToPi πŸ“–mathematicalNormSMulClass
SeminormedRing.toNorm
SeminormedAddCommGroup.toNorm
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
SeminormedRing.toRing
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
seminormedAddCommGroupToPi
Pi.instSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”norm_smul
instNormSMulClass
norm_apply_le πŸ“–mathematicalβ€”Real
Real.instLE
Norm.norm
SeminormedAddCommGroup.toNorm
WithLp.ofLp
PiLp
instNorm
β€”dist_zero_right
dist_apply_le
norm_eq_card πŸ“–mathematicalβ€”Norm.norm
PiLp
ENNReal
instZeroENNReal
instNorm
Real
Real.instNatCast
Finset.card
Set.Finite.toFinset
setOf
WithLp.ofLp
Real.instZero
Set.toFinite
Subtype.finite
Finite.of_fintype
Set
Set.instMembership
β€”β€”
norm_eq_ciSup πŸ“–mathematicalβ€”Norm.norm
PiLp
Top.top
ENNReal
instTopENNReal
instNorm
iSup
Real
Real.instSupSet
WithLp.ofLp
β€”β€”
norm_eq_of_L1 πŸ“–mathematicalβ€”Norm.norm
PiLp
ENNReal
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
instNorm
SeminormedAddCommGroup.toNorm
Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
β€”norm_eq_sum
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Finset.sum_congr
Real.rpow_one
div_self
norm_eq_of_L2 πŸ“–mathematicalβ€”Norm.norm
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
instNorm
SeminormedAddCommGroup.toNorm
Real.sqrt
Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
Monoid.toNatPow
Real.instMonoid
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
norm_eq_of_nat
fact_one_le_two_ennreal
ENNReal.instCharZero
Real.sqrt_eq_rpow
Nat.cast_one
norm_eq_of_nat πŸ“–mathematicalENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Norm.norm
PiLp
instNorm
SeminormedAddCommGroup.toNorm
Real
Real.instPow
Finset.sum
Real.instAddCommMonoid
Finset.univ
Monoid.toNatPow
Real.instMonoid
WithLp.ofLp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Real.instNatCast
β€”ENNReal.toReal_pos_iff_ne_top
ne_of_eq_of_ne
ENNReal.natCast_ne_top
norm_eq_sum
Finset.sum_congr
ENNReal.toReal_natCast
Real.rpow_natCast
one_div
norm_eq_sum πŸ“–mathematicalReal
Real.instLT
Real.instZero
ENNReal.toReal
Norm.norm
PiLp
instNorm
Real.instPow
Finset.sum
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
β€”ENNReal.toReal_pos_iff
LT.lt.ne'
LT.lt.ne
norm_ofLp πŸ“–mathematicalβ€”Norm.norm
SeminormedAddCommGroup.toNorm
Pi.seminormedAddCommGroup
WithLp.ofLp
Top.top
ENNReal
instTopENNReal
PiLp
instNorm
β€”fact_one_le_top_ennreal
nnnorm_ofLp
norm_seminormedAddCommGroupToPi πŸ“–mathematicalβ€”Norm.norm
SeminormedAddCommGroup.toNorm
seminormedAddCommGroupToPi
WithLp
instNorm
WithLp.toLp
β€”β€”
norm_sq_eq_of_L2 πŸ“–mathematicalβ€”Real
Monoid.toNatPow
Real.instMonoid
Norm.norm
PiLp
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
instNorm
SeminormedAddCommGroup.toNorm
Finset.sum
Real.instAddCommMonoid
Finset.univ
WithLp.ofLp
β€”Nat.instAtLeastTwoHAddOfNat
fact_one_le_two_ennreal
nnnorm_eq_of_L2
NNReal.sq_sqrt
NNReal.coe_sum
norm_toLp πŸ“–mathematicalβ€”Norm.norm
WithLp
Top.top
ENNReal
instTopENNReal
instNorm
SeminormedAddCommGroup.toNorm
WithLp.toLp
Pi.seminormedAddCommGroup
β€”norm_ofLp
norm_toLp_const πŸ“–mathematicalβ€”Norm.norm
WithLp
instNorm
SeminormedAddCommGroup.toNorm
WithLp.toLp
Real
Real.instMul
Real.instPow
NNReal.toReal
NNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”nnnorm_toLp_const
one_div
ENNReal.toReal_inv
NNReal.coe_natCast
norm_toLp_const' πŸ“–mathematicalβ€”Norm.norm
WithLp
instNorm
SeminormedAddCommGroup.toNorm
WithLp.toLp
Real
Real.instMul
Real.instPow
NNReal.toReal
NNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”nnnorm_toLp_const'
one_div
ENNReal.toReal_inv
NNReal.coe_natCast
norm_toLp_one πŸ“–mathematicalβ€”Norm.norm
WithLp
instNorm
SeminormedAddCommGroup.toNorm
WithLp.toLp
Pi.instOne
Real
Real.instMul
Real.instPow
NNReal.toReal
NNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instSemiringNNReal
Fintype.card
ENNReal.toReal
ENNReal
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
AddMonoidWithOne.toOne
instAddCommMonoidWithOneENNReal
β€”norm_toLp_const
norm_toLp_single πŸ“–mathematicalβ€”Norm.norm
WithLp
instNorm
SeminormedAddCommGroup.toNorm
WithLp.toLp
Pi.single
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
β€”nnnorm_toLp_single
proj_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
PiLp
topologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
WithLp.instModule
Pi.module
ContinuousLinearMap.funLike
proj
WithLp.ofLp
β€”β€”
projβ‚—_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
PiLp
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
WithLp.instModule
Pi.module
LinearMap.instFunLike
projβ‚—
WithLp.ofLp
β€”β€”
secondCountableTopology πŸ“–mathematicalSecondCountableTopologyPiLp
topologicalSpace
β€”Homeomorph.secondCountableTopology
TopologicalSpace.instSecondCountableTopologyForallOfCountable
smul_apply πŸ“–mathematicalβ€”WithLp.ofLp
PiLp
WithLp.instSMul
Pi.instSMul
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
AddZero.toZero
AddZeroClass.toAddZero
β€”β€”
sub_apply πŸ“–mathematicalβ€”WithLp.ofLp
PiLp
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
β€”β€”
sumPiLpEquivProdLpPiLp_apply_ofLp πŸ“–mathematicalβ€”WithLp.ofLp
WithLp
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
seminormedAddCommGroup
instFintypeSum
WithLp.instProdSeminormedAddCommGroup
WithLp.instModule
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
Pi.module
AddCommGroup.toAddCommMonoid
Prod.instAddCommGroup
Prod.instModule
WithLp.instAddCommGroup
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
sumPiLpEquivProdLpPiLp
WithLp.toLp
β€”RingHomInvPair.ids
sumPiLpEquivProdLpPiLp_symm_apply_ofLp πŸ“–mathematicalβ€”WithLp.ofLp
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
WithLp
WithLp.instProdSeminormedAddCommGroup
seminormedAddCommGroup
instFintypeSum
WithLp.instModule
Prod.instAddCommGroup
SeminormedAddCommGroup.toAddCommGroup
Prod.instModule
AddCommGroup.toAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
Pi.module
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
LinearIsometryEquiv.symm
sumPiLpEquivProdLpPiLp
LinearEquiv
Prod.instAddCommMonoid
Pi.addCommMonoid
LinearEquiv.instEquivLike
LinearEquiv.symm
LinearEquiv.prodCongr
WithLp.linearEquiv
β€”RingHomInvPair.ids
toEquiv_homeomorph πŸ“–mathematicalβ€”Homeomorph.toEquiv
PiLp
topologicalSpace
Pi.topologicalSpace
homeomorph
WithLp.equiv
β€”β€”
toEquiv_uniformEquiv πŸ“–mathematicalβ€”UniformEquiv.toEquiv
PiLp
uniformSpace
Pi.uniformSpace
uniformEquiv
WithLp.equiv
β€”β€”
toHomeomorph_uniformEquiv πŸ“–mathematicalβ€”UniformEquiv.toHomeomorph
PiLp
uniformSpace
Pi.uniformSpace
uniformEquiv
homeomorph
UniformSpace.toTopologicalSpace
β€”β€”
toLp_apply πŸ“–mathematicalβ€”WithLp.ofLp
WithLp.toLp
β€”β€”
uniformContinuous_ofLp πŸ“–mathematicalβ€”UniformContinuous
WithLp
uniformSpace
Pi.uniformSpace
WithLp.ofLp
β€”uniformContinuous_comap
uniformContinuous_toLp πŸ“–mathematicalβ€”UniformContinuous
WithLp
Pi.uniformSpace
uniformSpace
WithLp.toLp
β€”uniformContinuous_comap'
uniformContinuous_id
zero_apply πŸ“–mathematicalβ€”WithLp.ofLp
PiLp
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
WithLp.instAddCommGroup
Pi.addCommGroup
SeminormedAddCommGroup.toAddCommGroup
β€”β€”

(root)

Definitions

NameCategoryTheorems
PiLp πŸ“–CompOp
127 mathmath: DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply, PiLp.continuousLinearEquiv_symm_apply, PiLp.nndist_eq_sum, PiLp.basisFun_equivFun, PiLp.edist_self, LinearIsometryEquiv.piLpCongrRight_symm, contDiffOn_piLp', PiLp.completeSpace, frontier_halfSpace, PiLp.toEquiv_uniformEquiv, LinearMap.IsSymmetric.diagonalization_apply_self_apply, PiLp.norm_ofLp, contDiff_piLp', Behrend.sphere_subset_preimage_metric_sphere, LinearIsometryEquiv.piLpCongrRight_apply, PiLp.nnnorm_eq_of_L2, MeasureTheory.integrable_piLp_iff, PiLp.instProdT0Space, PiLp.coe_continuousLinearEquiv, coe_equiv_lpPiLp_symm, MeasureTheory.charFunDual_pi', PiLp.dist_eq_card, contDiffAt_piLp_apply, LinearIsometryEquiv.piLpCongrLeft_apply, PiLp.sub_apply, PiLp.edist_eq_sum, PiLp.nndist_apply_le, coe_addEquiv_lpPiLp_symm, PiLp.instNormSMulClass, PiLp.hasFDerivAt_toLp, Pi.orthonormalBasis_apply, LinearMap.IsSymmetric.diagonalization_symm_apply, PiLp.dist_eq_of_L1, PiLp.enorm_apply_le, PiLp.nnnorm_apply_le, PiLp.basisFun_repr, interior_halfSpace, PiLp.dist_eq_iSup, PiLp.norm_eq_sum, LinearIsometryEquiv.piLpCurry_apply, contDiffAt_piLp', hasStrictFDerivAt_piLp, PiLp.basisFun_apply, LinearIsometryEquiv.piLpCongrRight_single, hasFDerivWithinAt_piLp, differentiableOn_piLp, closure_open_halfSpace, PiLp.nnnorm_eq_ciSup, PiLp.norm_sq_eq_of_L2, PiLp.isOpenMap_apply, PiLp.norm_eq_of_L1, coe_equiv_lpPiLp, differentiableAt_piLp, contDiff_piLp, PiLp.norm_eq_ciSup, PiLp.borelSpace, PiLp.dist_apply_le, PiLp.edist_eq_iSup, LinearIsometryEquiv.piLpCongrRight_refl, PiLp.continuous_apply, coe_lpPiLpβ‚—α΅’, PiLp.edist_apply_le, contDiffOn_piLp, Pi.orthonormalBasis.toBasis, PiLp.smul_apply, PiLp.projβ‚—_apply, MeasureTheory.memLp_piLp_iff, EuclideanSpace.piLpCongrLeft_single, PiLp.toEquiv_homeomorph, LinearIsometryEquiv.piLpCurry_symm_apply, PiLp.secondCountableTopology, PiLp.dist_sq_eq_of_L2, PiLp.hasStrictFDerivAt_apply, PiLp.toHomeomorph_uniformEquiv, PiLp.add_apply, PiLp.norm_eq_of_nat, coe_lpPiLpβ‚—α΅’_symm, PiLp.norm_apply_le, differentiable_piLp, contDiffOn_piLp_apply, MeasureTheory.Integrable.of_eval_piLp, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', PiLp.basis_toMatrix_basisFun_mul, PiLp.edist_eq_card, PiLp.nnnorm_eq_of_L1, PiLp.hasFDerivAt_ofLp, contDiff_piLp_apply, contDiffWithinAt_piLp, MeasureTheory.charFunDual_eq_pi_iff', MeasureTheory.MemLp.of_eval_piLp, coe_addEquiv_lpPiLp, PiLp.hasFDerivAt_apply, PiLp.proj_apply, PiLp.dist_eq_of_L2, LinearIsometryEquiv.piLpCongrLeft_single, PiLp.neg_apply, PiLp.coe_symm_continuousLinearEquiv, PiLp.nnnorm_eq_sum, PiLp.inner_apply, PiLp.zero_apply, contDiffAt_piLp, differentiableWithinAt_piLp, PiLp.hasStrictFDerivAt_ofLp, PiLp.basisFun_map, equiv_lpPiLp_norm, PiLp.continuousLinearEquiv_apply, PiLp.norm_eq_of_L2, MeasureTheory.eval_integral_piLp, closure_halfSpace, LinearIsometryEquiv.piLpCongrLeft_symm, Pi.orthonormalBasis_repr, contDiffWithinAt_piLp', PiLp.edist_eq_of_L1, PiLp.instIsBoundedSMul, contDiffWithinAt_piLp_apply, interior_euclideanQuadrant, PiLp.edist_comm, PiLp.nndist_eq_of_L2, RCLike.inner_eq_wInner_one, Matrix.toLpLin_eq_toLin, PiLp.nnnorm_ofLp, PiLp.dist_eq_sum, PiLp.edist_eq_of_L2, PiLp.nndist_eq_iSup, PiLp.norm_eq_card, PiLp.nndist_eq_of_L1, PiLp.hasStrictFDerivAt_toLp
instCoeFunPiLpForall πŸ“–CompOpβ€”
instInhabitedPiLp πŸ“–CompOpβ€”

---

← Back to Index